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FOREWORD

The HJuman Factors Technical Area of the Army Research Institute
(ARI) is cnncerned with human rescurce demands of increasingly complex
battlefield systems used to acquire, transmit, process, disseminate,
and utilize information. This increased complexiiy places great de-
mands upon the operatcr interacting with the machine system. Research
in this ares is focused on human perforrance problems related to inter-
actions within command and control centers as well as issues of system
development. It is concerned with such areas as software develcpment,
topographic oroducts and procedures, tactical symbclogy, user-oriented
systems, information management, staff operations and procedures, ard
sensor systers integration and utilization.

One area of special interest iavolves the development of computer
scftware to support automated battlefizid systems., Software develop-
ment is costly, unreliahle, and not well understood. In this researcn,
software design methcodologies were analyzed in terms of human problem~
sclving behavior. The aralysis indicated that the design methods im-
posed varying constraints and demands on the software developer and
that the methods differed in susceptibility to desiyn errors. This
research 1s part of a larger effort to develop a conceptvalization of
the programming process and identify behavioral bottlenecks in soft-
ware develcpment. Efforts in this area are directed at improving ac-
curacy and productivity in programming through che design of procedures,
languages, and methods to enhance performance of software developluent
tasks.

Research in the area of human factors in software development is
conducted as an in-house effort augmented contractually by organiza-
tions selected as having unique capabilities and facilities, in this
case Science Applications, Inc., under contract DAHC19-78-C-0005, The
effort is responsive to requirements of Army Projects 2Q762725§ZZ§, and
to general requirements expressed by members of the Integrated Software
Research and Development Working Group (ISRAD).

The authors are indebted to Martha Cichelli, Margaret Hamilton,
Henry Ledgard, John O'Hare, and EGwaxd Yourdon for their helpful com-

ments on this report.
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AN ANALYSIS OF SOFTWARE DESIGN METHODOLOGIES

BRIEF

Requirement:

- To describe ard analyze alternative formal software design
methodologies.,

Procedure:

Four formal software design methodologies were described and
briefly analyzed: (1) Structured Design, (2) Jackson's Methodology,
(3) Integrated Software Development System (Higher Order Software),
and (4) Warnier's "Logical Construction of Programs." Relative
strengths, weaknesses, and commonalities among the methods were iden-
tified and human factors prorlem areas analyzed.

Findings:

Several majcr human factors deficiencies arnd problems were iden-
tified. [ormal software desig. methods differ in terms of: applica-
bility to problems of different types, size or complexity; suscepti-
bility to design errors; and consurairts and limitations imposed on
the software designer. Various methods limit the designer's ability
to select an appropriate problem representatior, prevent tne designer
from utilizing relevant knowledge and experience, or impose potentially
significant information loads 01 the designer. Improvements in cesign
methodolog.es require a better understanding of the problem-solving
behavior of software designers; potential research topics in this arsa
were identified.

o

Utilization of Findings:

P
e

This descriptior. and analysis of software design methodologies
N will assi.’ software developers in selectioi. of an approrriate design
method consistent with the problem type, size, and complexity. This
analysis also provides useful information to the software desiyner on
the potential for design errors using different techniques, and ax-
plicitly identifies areas where design methods are imprecise and may
be difficult to implement. With additional information on the cogni-
tive performance of sof:iware cesigners, the identified weaknesses of
vhe design techniques reviewed may ke improved.
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INTRODUCTION

The production of computer software has become an area of
increasing interest and concern. Software production, as currently
practiced, is axtremely costly and error prone. Boehm (1973) re-
ported that the percentage of total system development cost associated
with software is climbing rapidly, from less tnan 20% in the 1950's
to 70% in the 1970's and to a projected 90% of total system costs by
1985.

Clearly, there are many factors involved in the high cost and
other problems associated with today's software development process.
It seems probable, however, that the greatest potential for real im-
provement lies in concentrating on the software design process. Boehm
(1975) reports that, in several large system development efforts,
analysis and design accounted for 33-46% of the total effort expended.
He also estimates that each additional unit of time allocated to analysis
and design saves 1.5-3 units of time in later programming, debugging,
and integration stages (Boehm, 1974).

Design errors present a serious problem because they are frequent
and because they are very difficult and expensive to correct. In a
major study of Air Force automation requirements in the command and con-
trol area (Boehm and Haile, 1972),a review of many software projects in-
dicated that the majority of errors were design, not coding, errors.
Even more significantly, most design errors were not detected until the
system test phase. Of all errors, 54% were not found until after accept-
ance testing. Coding errors accounted for only 9%; the other 45% were
design errors.

In response to these problems, several formal techniques for
software design have recently been proposed. This paper provides a
review of these techniques and an analysis of the psychological issues
and properties underlying the techniques.
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‘Before proceeding, however, we will briefly consider what is
meant by the term "software design". Figure 1 presents brief de-
scriptions of software design and several other software development
tasks. For the purposes of this paper, the term software design is
used with a fairly precise meaning. It does not include deciding how
a system should behave from the viewpoint of the user. That activity
is called "systems analysis,” and is not concerned with the internal
structure of the software. Many different software designs might be
derived, any of which would exhibit similar behavior from the user's
viewpoint. Software design is also not concerned with the detailed
procedural logic required to accomplish a particular computation. That
is algorithm or program design, or “programming”.

Logically, software design occurs after system analysis and
before programming. Software design can be considered as “the process
of translating functional specifications into a structural description
of a system that will satisfy these specifications”. There are, in
general, three characteristics of this structural description. First,
the description involves a "modular decomposition"; that is, the soft-
ware functions required by the specifications are decomposed into a
collection of units or program modules, each of which satisfies oniy
part of these specifications. Second, the design includes specification
of properties of the data flow among modules, which provides for com-
munication among program units. Third, a software design usually in-
cludes the definition of the data structures that are required to
satisfy the functional requirements, including informatioﬁ about data
types, organization into records and files, etc.

An example may clarify the distinction among these three types
of design information. A rather informal functional specification
that could be given to a designer for a small system is presented in
Figure 2. A possible design to meet these specifications is illustrated
in Figure 3. Each of the "boxes" in Figure 3a represents a module, and
the arcs connecting the modules serve to describe, at a very high level,
the control flow. An appropriate decomposition of the system into
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Name Description
System Analysis Determination of the desired behavior
or of the system, without regard for under-
Functional Design lying hardware or software.

Determination of software system struc-
Software Cesign ture, including data structures and
program modules.

fetailed definition of the logical opera-
Programmirng tions, procedures, ov algorithms invoived
in a single program module.

Translation of detailed logical design
Coding of a program module into a programming
language.

Diagnosis and correction of the errors

Debugging in a program moduie.
After known errors in individual program
modules have been corrected, diagnosis
In%ggz?zgd and correction of errors in groups of

modules together, and eventually the
whole system.

Figure 1. Some of the Tasks Involved ir
Software Development.
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PAGE-KEYED INDEXING SYSTEM

s

BACKGROUND.

A book publisher requires a system to produce a page-keyed
index. This system will accapt as input the source text of a book
and produce as output a list of specified index terms and the page
numbers on which each index term appnears. This system is to operate
in a batch mode.

SN ERTYY

DESIGN TASK.

You are to design a system to produce a page-keyed index.
The source file for each book to be indexed is an ASC11 file re-
3 siding on disk. Page numbers will be indicated on a line in the form
/J*NNNN WHERE /* are marker characters used to identify the occurrence
of page numbers and NNNN is the page number.

e AT B s

The page number will appear after a block of text that com-
prises the body of the page. Normally, a page contains enough informa-
tion to fill an 8 1/2 x 11-inch page. Words are delimited by the fol-
towing characters: space, period, comma, semi-colon, colon, carriage-
return, question mark, quote, double quote, exclamation poinc, and line-
feed. Words at the end of a line may be hyphenated and continued on
the following line but words will not be continued across page boundaries.

A term file, containing a list of terms to be indexed, will be
read from a card reader. The term file contains one term per line,
where a term is 1 to 5 words long.

The system should read the source files and term files and find
all occurrences of each term to be indexed. The output should conta.n
the index terms listed alphabetically with the page numbers following
each term in numerical order.

A null source fill indicates that processing is completed. Error
messages and a termination message should be writtea to tie operator's
console. Each completed index is to be stored on disk for later listing.

Figure 2. Example of a Simple Software Design Problem
(adapted from Levin, 1976).
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(a) Modular Structure

-
READ READ {PRocsss | OUTPUT
INITIALIZE - .
ITIALIZ TERMS PAGE | P | TNDEX
(b) Data Flow
In Out
1. - .- - - - -
2. - - - - Index terms
3. - - - - Page of text
4. Index terms, page of text Index entries
5. Index terms, index entries -~ - - =
(c) Data Structure
Inout Data Structures Qutput Data Structure
01 Test file 01 Index
02 Page {multinle instances) 02 'ndex grouo {muitiple instances)
03 Line of text (multiple i1nstances) 03 Index term
03 Page numper 03 Index entry (multiple instances)
02 2nd of file 02 End of file
01 Index term file
02 Index term (muitiple instances)
02 End of file
i Figure 3. Simplified Example of Software Design for the Problem of

Figure 2.
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program modules not only results in a logivally simple and compre-
hensible design, but serves as a basis for the allocation of separ-
ate pa..s of the implementation effort to different programmers.
Actually the MODULAR STRUCTURE of Figure 3a is at a rather nigh
level, and a more detailed design would ordinarily be specified,
even though this system is small enough to be implemented by 2
single programmer.

Notice that the lines connecting modules in Figure 3a are
numbered. These numbers correspond to the DATA FLOW specification
of Figure 3b, which illustrates the flow of data among modules. For
example, when the main ("Indexer") module calls the "Process Page"
module, the main module makes the index terms and a page of text
available to the “Process Page" module. "Process Page" performs its
function, and may return index entries to the main module. This pas-
sage of data, or data flow, is shown in line 4 of Figure 3b.

Finally, Figure 3c illustrates a DATA STRUCTURE specification
for this problem. It shows, for example, that an innut Text File
consists of any number of text pages, each with multiple text lines
and a single page number.

Not every software design involves all three types of specifi-
cation shown in Figure 3, nor does every software design method address
all of these. They are all included here to illustrate three basic
classes of information which software designs may contain. A fourth
class of design information, control flow, is illustrated only loosely
in Figure 3, but will be discussed in a later section. on design docu-
mentation techniques.

This revieﬁ is intended to provide both descriptive and critical
information about a representative set of formal software design meth-
odologies. In particular, the survey reported here had 5 goals:
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1. Enumerate the relative strengths and weaknesses
of each considered technique.

Identify commonalities and differences.
3. Critically analyze human factors problem areas.

4, Make specific recommendations for improvements
in design techniques.

5. Formulate hypotheses for the empirical analysis
of software techniques.

The remainder of this report is divided into five sections.
Section 2 discusses the software design process from a theo-
retical perspective, and provides the framework for subsequent dis-
cussion of formal design methodologies. Section 3 reviews a variety
of informal design techniques which preceded the development of these
formal methodologies. Section 4 discusses design documentation tech-
niques, and clarifies further the variety of information which may
appear in a finished software design.

Section 5 presents a description of the formal design methodo-
logies which were surveyed in this study. These include:
Structured Design
Jackson's Methodology
Integrated Software Development
System (ISDS/HOS)

Warnier's "Logical Construction
or Programs"

Section 6 contains a brief analysis of formal design methodolo-
gies as problem-solving procedures and indicates potential areas for
future research on software design.
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THE DESIGN PROCESS

"Design" has always been an integral part of software develop-
ment, but has only recently begun to receive attention. OFf all the
tasks involved in software development, design is perhaps the least
well understood. In general, the software design process does not
appear to te the type of algcrithmic or mechanical process that can
be easily and clearly described to others. As the Boehm and Haile
(1972) study implies,design also appears to be difficult, or at least
highly error-prone. Design is the one phase of sof'tware development
that produces the most errors, the most serious errors, and the longest-
lasting errors. This is clearly not the result of a simple process.

DESIGN TASKS IN GENERAL

Although our knowledge of software design behavior is limited,
design tasks in general have been studied. Design problems have been
categorized based on task requirements, and general problem-solving
methods have becn analyzed. In this section, some work in these areas
will be reviewed, and then applied to the analysic of software design
tasks.

A very general definition of design is presented in Simon's
(1969, p. 59) discussions of the "sciences of the artificial" --
"design ... is concerned with how things ought to be, with devising
artifacts to attain goals". Simon is concerned with contrasting
"natural” and "artificial" sciences. Basically, a "natural" science
is "a body of knowledge about some class of things -- objects or
phenomena -- in the world; about the characteristics and properties
that they have; about how they behave and interact with each other”
(p. 1). An "artificial" science, n contrast, is one that is created
by man and dynamically altered or molded to fit man's current con-
ceptions of his environment.
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The distinction between solving natural and artificial problems
is auite clear. Natural sciences are concerned with “how things are"
and the natural scientist knows (or presumably can discover) the laws,
phenomena, and other techniques for dealing with such problems. Arti-
ficial sciences, however, are concerned with "how things ought to be”
and the "Taws" and techniques for dealing with such problems are, like
the science, artificial.

The recognition that design is an artificial science lends
support to Bazjanac's (1975) criticism of computer aids for architec-
tural design. Bazjanac notes, guite correctly, that the promises of
computer-aided design are largely unfulfilled. He argues that "the
underlying causes of these promises are misconceptions about the design
process and now design is done. The most appalling of them is the
notion that one can extract formal models from the design process and
that the operation and utilization of such models can be separated
from other activities of design" (p. 25). This criticism is consistent
with the characterization, by Bazjanac and others, of dasign as a
"wicked" problem. One cnaracteristic of a wicked problem is that de-
fining the criteris which must be met by an appropriate solution to the
problem is equivalent to solving the problem. It is clearly overly
pessimestic to conclude that design behavior cannot, in principle, be
understood. It is important to recognize. though, that such under-
standing may be difficult to achieve.

Bazjanac's characterization of the design process is similar
to Simon's (1973) distinction between "ill-structured" and "well-
structured" problems. In order to be well-structured, a nroblem must,
among other criteria, have a clearly defined goal ancd a method for
testing whether this goal is attained, have clearly defined components,
and provide a means for the problem sclver to represeni and use any
know'ledge that is considered aporopriate. Simon argues quite strongly
{using architectural design as an example) thrat most, i€ not all,
problems are ill-structured and that "detiniteness of problem struciure
is largely an illusion that arises when we systematically confound the




idealized problem that is presented to an idealized (and unlimitedly
powerful) problem solver with the actual problem that is to be attacked
by a problem solver with limited (even if large) computational capa-
cities. If formal completeress and decidability are rare properties

in the world of formai systems, effective definability is equally

rare in the real world of large problems" (p. 186).
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The point of view we will take in this review is to consider
software design as a type of prcblem-solving task. It is important
to determine, therefore, what type of problem software design is,
from a human pvcblem-solving perspective. Previous research on human
proolem solving suggests two dimensions for classifying problems--
“type" and "size." Type of problem is importart since different types
of problems are. in general, best approached with different nroblem-
sulving techniques. Size is important, since the software designer
has a finite amount of resouirces (human memory resources, processing
resources, etc.) and it is not uncommon that the demands imposed by
a given probiem exceed those resources.
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Greeno (1978) proposes a clarification consisting of three
types of problems. In "preblems of inducing structure" (e.g., analogy
problems), the elements of the problem are given and the task is to
discover the pattern of relations among the elements. In "problems of
arrangement" (e.g., anagrams), the elements of the problem are given
and the task is to generate possible arrangements and search for an
irrangement that meets some criterion. In "transformation problems"
(e.g., towers of Hanoi), the initial situation, desired situation, and
a set of operators that transform one situation into another are given
and the task is to find some sequence of operations that transforms
the initial situation into the desired situation. Greeno's taxonomy,
though not very detailed, suggests that certain problem-solving tech-
niques apply to cne class of problem but not necessarily to the others.
For example, means-ends analysis is a generallv effective heuristic for
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transformation problems, but is less effective (and perhaps even
inappropriate) for arrangement or structure problems.

Problem-solving methods can be viewed as processes which require
some input and return some output (cf. Newell, 1973). The input to a
method is information about the task or problem to which it is to be
applied. In effect, a methcd requires that certain "givens" be pre-
sent in the statement of the problem. A method can, of course, require
relatively many or relatively few "givens". The outputs of a method
are the results it produces. A methoc can be guaranteea to deliver
useful results or can offer only a possibility of useful results.

In general, methods that require very specific inouts produce
very useful results; methods that require less specific inputs pro-
duce less useful results. These methods are called, respectively,
“strong methods", and "weak methods". An additional distinction is
useful; by virtue of requiring little information about a particular
application, a weak method is applicable to a larger numper of tasks
or problems than is a strong method. For example, there are general
"troubleshooting" techniques which apply equally well to medical diag-
nosis, tracing the rault in an automotive electrical system, and soft-
ware debugging. Clearly, these are extremely weak, general methods.
They are broadly applicable, but they are seldom adequate to produce
a complete solution to a diagnostic problem without additional, more
specific techniques.

SOFTWARE DESIGN

Although the above discussion summarized work on the design
process, problem types, and methods, it is difficult to directly
apply this literature to software designr problems. Software design
as a problem-solving task appears to involve aspects of all three
classes of problems proposed by Greeno; thus, many different tech-
riques may be required. In addition, sofiware design problams are
frequentlys too large for the designer tc conceptualize the entire
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design at an appropriate level of detail. In effect, the design
problem initially demands more resources than the designer has.

Consider, for example, the design of two statistical programs,
one of which performs a simple t-test, while the other is a general-
purpose statistical package. The t-test program is the kind of problem
which is manageable in the designer's head, and little or no design
behavior is explicitly observable in tasks of this sort -- the designer
simply starts writing the program. It is not at all clear that any
formal cesign methods are required, or would even be helpful, in this
situation. In the case of a complex statistical package, however,
the requirement for a separable dezign effort is clear, and it is
1ikely that formal design methods could be beneficial. Even this
problem is simple, when compared with many of the large systems being
built today.

It is when the design problem is large or complex that the need
for formal design methods is most strongly felt. If the problem is
too big to be handled in the designer's head, stiuctured procedures
are needed to help avoid errors and unnecessarily complex desigus.

In postulating a general set of guidelines for software design,
we are necessarily restricted to proposing weak methods. This is be-
cause of the wide differences which exist among software design prob-
Tem types. For example, it is not at all clear that the methods useful
in designing a business report generator are all applicable to the
design of a programming language compiler, or vice-versa. It is, of
course, theoretically possible to postulate general guidelines employing
strong methods. Such approach would involve successively partitioning
the larger comain of software design into smaller and smaller subdo-
mains and identifying the strong methods appropriate for each sub-
domain. In effect, we would have a catalogue of procedures that are
sufficient to solve any design problem.
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Our current understanding of software design, however, does
not allow us to form meaningful and useful partitions. By using
weak methods we cannot insure that our methods will always produce
useful results, but they can be applied to any software design
problem, not just a subset of such problems.

Within the past few years, several prescriptive techniques
for software design have been proposed. The present report concerns
itseif with a representative set of these techniques. Although dis-
cussions of these techniques emphasize different concepts and pro-
po<e guidelines and procedures that appear to be fundamentally dif-
ferent, all of the techniques appear to share a common, very general
approach to software design. The principal technique employed by all
methodologies involves a "divide and conquer" strategy, more formally
referred to as "problem reduction”.

Basically, a problem-reduction approach involves generating
and solving suboroblems. The original problem is analyzed and de-
composed into a set c¢f smaller subproblems, whose solutions imply a
sclution to the original problem. Each subproblem can similarly be
decomposed until subproblems are generated wnose solutions are con-
sidered to be trivial.

A software design problem may be conceptually too large for
the designer to manage, at least in terms of the ultimate level of
detail that will be required. If the designer can cunceptualize the
problem on a more abstract level, however, the desiqner may be able
to decompose it into smaller, more manageable problems. Eventually,
subproblems will be produced which the designer considers to be
“Jrimitive". These primitive prcblems are generally solvablzs by
algorithmic means and it is at this point that the design is completed
and implementation begins.
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There are obvicus advantages to using problem reduction and
it appears to be an appropriate approach to software design. UWe will
not enumerate the advantages here except to note that it is often
easier to solve two (or several) smaller problems than to attempt one
iarger problem. Problem reduction is, however, not without potential
disadvantages or difficulties.

First, successful problem reduction requires that the solutions
of the subproblems imply a solution to the larger problem from which
they were decomposed. Assume, for example, that thre designer's initial
partition of the original problem is incorrect -- it omits a necessary
subgoal. Those subgoals that were identified will be expanded, and,
at some point, the desigi will be declared "finished". The resulting
design does not provide an adequate soiution to the original design
problem, but this may go undetected until the implementation phase
or even later.

Second, successful use of problem reduction requires that the
subproblems be relatively independent. Clearly, the subproblems
(modules) of a design must be interrelated to some degree, but the
solution of one subproblem should not affect the solutions of other
subproblems. For example, if the design of one module causes changes
to be made to the design of another, those modules (subproblems) are
not independent. In general, modules which are independent can be
implemented independently.

Applying a problem-reduction approach requires problem-reduction
operators and some type of evaluation ftunction. Problem-reduction
operators are used to aid in resolving the first difficulty described,
assuring the correctness and sufficiency or the design. Evaluation
functions aid in resolving the second difficulty, achieving module
independence. A problem-reduction operator is a method for Finding
some (hopefully) adequate decomposition of a problem. In general, more

than one decomposition is possible and evaluation functions are used to
determine whether the identified subproblems are independent.

14
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Our current understanding of software design, however, does
not allow us to form meaningful and useful partitions. By using
weak methods we cannot insure that our methods will always produce
useful results, but they can be applied to any software design
3 problem, not just a subset of such problems.

P

Within the past few years, several prescriptive techniques
for software design have been proposed. The present report concerns
itself with a representative set of these techniques. Although dis-
cussions of these techniques emphasize different concepts and pro-
pose guidelines and procedures that appear to be fundamentally dif-
ferent, all of the techniques appear to share a common, very general
approach to software design. The principal technique employed by all
methodologies involves a "divide and conquer" strategy, more formally
referred to as "problem reduction".

T P T ST

Basically, a problem-reduction approach involves generating
and solving subproblems. The original problem is analyzed and de-
composed into a set of smaller subproblems, whose solutions imply a
solution to the original problem. Each subproblem can similarly be
decomposed until subproblems are generated whose solutions are con-
sidered to be trivial.
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A software design problem may be conceptually too large for
the designer to manage, at least in terms of the ultimate level of
detail that will be required. If the designer can conceptualize the
problem on a more abstract level, however, the designer may be able
to decompose it into smaller, more manageadble problems. Eventually,
subproblems will be produced which the designer considers to be
“primitive". These primitive problems are generally solvable by
algorithmic means and it is at this point that the design is completed
and implementation begins.
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There are obvious advantages to using problem reduction and
it appears to be an appropriate approach to software design. We will
not enumerate the advantages here except to note that it is often
easier to solve two (or several) smaller problems than to attempt one
larger problem. Problem reduction is, however, not without potential
disadvantages or difficulties.

First, successful problem reduction requires that the solutions
of the subproblems imply a solution to the larger problem from which |
they were decomposeu. Assume, for example, *that the designer's initial |
partition of the original problem is incorrect -- it omits a necessary
subgoal. Those subgoals that were identified will be expanded, ard,
at some point, the desigii will be declared "finished". The resulting
design does not provide an adequate solution to the original design
problem, but tnis may go undetected until the implementation phase
or even later.

Second, successful use of problem reduction requires that the
subprcblems be relatively independent. Clearly, the subproblems E
(modules) of a design must be interrelated to some degree, but the
sclution of one subproblem should not affect the solutions of other
subproblems. For example, if the design of one module causes changes
to be made to the design of another, those modules (subproblems) are
not independent. In general, modules which are independent can be
implemented independently.

Applying a probiem-reduction approach requires problem-reduction
operators and some type of evaluation function. Problem-reduction
operators are used to aid in resolving the first difficulty described,
assuring the correctness and sufficiency o7 the design. Evaluation
functions aid in resolving the second difficuity, achieving module
independence. A problem-reduction operator is a method for Finding
some (hopefully) adequate decomposition of a problem. In general, more

than one decomposition is possible and evaluation functions are used to
determine whether the identified subproblems are independent.
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A1l of the software design methodologies to be considered in

the following sections involve, in cne manner or another, problem-
reduction operators and evaluatiun functions. Although they differ
with respect to the particular operators and evaluation functions
employed, even those differences are smaller than the surface features
of the methodologies suggest. There are some important differences,
nonetheless, and it will be the purpose of the remainder of this report
to indicate some of the similarities and differences among these methods
from a human problem-solving point of view.

Given an awareness of the similarities and differences among the
methodologies, the paper will consider their advantages and disadvan-
tages. Even if we lack detailed knowledge of software design behavior,
it is assumed that design practices are undesirable if they generate
poor designs when correctly applied, or clearly overload known human
processing or memory limitations, or lead to predictable errors based
on our knowledge of human problem-solving behavior. In fact, several
deficiencies of a human factors type were identified by this study,
and will be discussed later.

Where possible, we have gone beyond the human factors analysis
of design techniques, suggesting specific improvements in design tech-
niques. When this was not possible because of a lack of knowledge of

designer behavior, research directions are suggested which might pro-
vide the needed information.
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INFORMAL SOFTWARE DESIGN TECHNIQUES
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From the late 1960's to the present, a variety of prescriptive
techniques for software design have been proposed. Most nave been
relatively informal, involving loose guidelines for modular decomposi-
tion (separation of the overall design into modules). Only a few of
the techniques are more fully developed, step-by-step procedures. in
keeping with the terminology of the literature, we will refer to the
relatively formal, step-by-step procedures as "software design methodo-
logies”, while the others will be called "informal design techniques".
In order to provide an appropriate developmental perspective for the
discussion of formal approaches, this secticn discusses the informal
techniques. The reader who is familiar with the literature on "top-down"
and "bottom-up" techniques, “"structured programming", "stepwise refine-
ment", "information hiding", etc., might choose to skim or bypass this

section.
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BASIC APPROACHES

A review of some of these less proceduralized techniques is
presented by Boehm (1975), who also considers the relative advantages
and disadvantages of the techniques. The techniques consiaered by
Boehm are "boftom-up" design or programming, two variations of "top-
down", “"structured programming", and a "model-driven" approach.

When using a bottom-up approach, a designer must first identify
those functions or routines whose development seems most "important" to
the overall design. "Importance" can be defined in terms of efficiency,
cost, development effort, etc. As the term "bottom-up" implies, these
functions are at the lower levels of the hierarchical structdre that is
being developed to represent the design. Once these routines are devel-
oped, the designer develops a "test driver" to allow testing of these
moaules and their interactions, a "computation monitor" to control the
order in which these functions are executed, and any necessary input-

Tem .

1 output modules. Finally, input-output "controilers”, initialization
f¥‘ ; routines, etc., are daveloped and the entire design is then tested for
' : errors.
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As applied to program development, a bottom-up approach involves
constructing low-level routines and then constructing "drivers" to con-
trol interactions among the low-level routines. There are two primary
advantages to this approach. First, "high risk" components (e.g., pro-
cessing natural language, real-time sensors, etc.) can be identified
early. If it is determined that it is not feasible to implement these
components as originally specified, the design specifications can be
changed before a great deal of effort is expended. Second, the emphasis
on the Tower levels encourages the development of reuseable modules
that can be appliied to other designs with 1ittle or no modification.

The bottom-up approach, like the other approaches discussed
in this section, can be used even for a pure design effort. The de-
signer identifies the "important" functions, designs m~dules t¢ accom-
plish them, and only then turns his or her attention to the design of
the remaining modules.

A primary disadvantage of this approach is that very little
attention is given, early in the design process, to the interactions
among modules. It may well be the case that interactions among modules
present more problems than the development of the individual modules.
In addition, a bottom-up approach does not give a great deal of
attention to overall system requirements, including user interfaces
and data structures. Furthermore, in an effort to use tne lower-level
components that are already developed, the higher levels of the design
may be "patched up". As a result, the total design may be very diffi-
cult to implement, understand, or modify.

"Top-down" methods are much more commonly used, and are often
advocated, especially for the later stages of software development (pro-
gramming through integrated testing). A particularly common top-down
metnod for software development is called the “top-down stub" approach.
In this approach, the designer first considers the overall system re-
quirements and develops a top-level program to meet these requirements.
This top level contains the necessary logic to control the lower-level
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functions, which are initially represented as "stubs". In successive
design steps, these stubs are then agecomposed into control logic and
necessary subfunctions, which are also represented as stubs.

As one might expect, the areas in which bottom-up methods are
particularly strong -- identification of high-risk components and develop-
ment of reuseable modules -- are the ireas in which top-dowr methods are
weakest. The advantages of top-down methods include early attention to
the interactions among modules and a more coherently defined higher level
in the design, which allows for easier comprehension, testing, and
maintainability. In general, it might also be expected that discrepancies
in the original problem statement (user requirements) might be detected
earlier and with less effort when top-down methods are used than when
using bottom-up techniques.

The “structured programming” approach to design is a direct ex-
tension of structured programming concepts (e.g., Dahl et al, 1972) to
the design process. The principal concepts are the use of hierarchical
modular structures, the use of a restricted set of control structures,
(e.g., IF...THEN...ELSE, DC WHILE), and having a single input and output
for each module. This approach is compatible with the other apprcaches
mentioned in this section and is especia‘ly useful when demonstrations
of design "correctness" are important.

"Model-driven design" attempts to relate, frequently through a
matrix representaticn, the "requirements" that are to be satisfied and
the "properties” of the computer syscem involved. Design generally
proceeds in a top~down fashion, but the use of such a matrix allows the
early identification of high-risk components that may be best developed
in a bottom-up fashion. This technique has not becn extensively used
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and appears to describe the management of design activities more than
the actual processes involved in design.

Other fairly general design techniques have also been mentioned
in the software design literature. "Middle-out" design requires the
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designer to identify and initially develop the most "important”

routine or function; in this regard, this approach is similar to a
"bottom-up" approach. The primary difference is that this routine
need not be the lowest level of the final design. Rather than being
function oriented, as in bottom-up design, the identified routine
could be control-oriented, input-oriented, etc. In general, this
routine is selected because of constraints on the final implementa-
tion, such as hardware constraints, user interface considerations, etc.

Like a bottom-up approach, designing middle-out tends to lead to
the early identification and development of high-risk components. The
principal disadvantage is that the remainder of the design may be
"patched up" to work with the first routine developed, so that this
high-risk component will not have to be modified. Also, like a bottom-up
approach, this technique may involve the modification and use of pre-
viously developed modules. The actual advantages and disadvantages
of this approach depend on where in the final design structure the
initially developed module falls, since a middie-out approach could,
conceivably, proceed in a strictly top-down or bottom-up fashion.

With interactive systems, design may proceed in either an
"inside-out" or "outside-in" manner. An inside-out approach begins
with a description of basic implementation environment capabilities
and functions ard attempts, through adding higher level moduies, to
match these basic capabilities and functions to user requirements.
An outside-in approach, on the other hand, begins with a description
of the user requirements and attempts to work down toward the available
capabilities. While an inside-out approach leads to the development of
a very efficient design, in terms of hardware and software, an outside-in
approach tends to ensure that the initial statement o7 user requirements
is practical, and if this is not the case, leads to an early reformula-
tion of these requirements.

These approaches describe, only at a very general level, how
design should be done. They do not specify, in a formal or procedural

|
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way, the actual steps involved in constructing a design. In addition,
they do not provide explicit criteria along which the final design or
the current state of a developing design can be evaluated. The formal
methodologies, discussed later, provide much more detail in terms of
procedure, decision criteria, etc. In between these two classes are
several developments which involve very general procedures and criteria
for modular decomposition. While not procedurally detailed, these
techniques provide some high-level guidanee with respect to individual
design decisions.

STEPWISE REFINEMENT

In stepwise refinement (Wirth, 1971), the designer starts at the
top level of the design, which is essentially a statement of the goal
“solve the problem". Design then proceeds in a breadth-first, level-by-
level manner. These levels can be differentiated with respect to the
amount of detail involved. At the early levels, the designer does not
consider specific programming languages or other aspects of the environ-
ment in which the solution will be implemented. As Ledgard (1973, pp.
45-46) points out, this stage of the design might contain statements like
"compute the nth prime number", "find the roots of the equation“, or
“process the payroll". We would characterize this as the abstract plan
level. Toward the lower levels of the design, the design works in terms
of the implementation environment. The intermediate levels of the design,
the detailed plan Tlevel, represent a transition between these very gen-
eral and very specific expressions.

Ledgard (1973) extends the definition of stepwise refinement by
incorporating Mill's general top-down concepts (e.g., Mills, 1971) and
Dijkstra's definition of structured programming. This technique, called
"meta-stepwise refinement" by Shneiderman (1976), provides a clear expres-
sion of the general concepts underlying stepwise refinement. Ledgard's
approach has six primary characteristics. First, the designer must
develop a clear understanding of the problem before proceeding. Second,
the initial stages of the design are independent of considerations of
the implementation environment; such considerations are only included

20
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at lower levels. Third, design is done in discrete levels, although
Ledgard admits the possibility that it may te useful to "look ahead" to
the probable functions of a lower level. That is, some desiqn decisions
may be based on the practicality or risk of the ultimate functicns or
modules that may be required by these decisions. Fourth, "the programmer
concentrates on critical, broad issues at the initial levels, and post-
pones details until lower levels". Fifth, the designer must ensure that
each level represents, at the appropriate level of detail, a correct
soiution to the problem. Finally, :ach level is generated by "successive
refinement" of the preceding level.

Ledgard advocates that the flow of program control be organized
around the data flow of the problem. He also cautions that "structured"”
or localized use of variables is just as important as the use of struc-
tured control flow. In meta-stepwise refinement, the analysis of data
flow is used to suggest module boundaries in, essentially, an input-
process-output format. The design is required to be level-structured
and tree structured and each level of detail within the design must
represent a complete solution to the original problem. Levei-structuring
and tree-structuring are the two principal evaluation functions employed
and they are applied after each level of detail! is refined.

“INFORMATION HIDING"

Parnas (1972) concentrates on the critzria whereby modularization
is accomplished. Parnas claims that his design by "specification of
information hiding modules" is both compatible with and complementary
to stepwise refinement techniques.

When the "information hiuirg™ %zchnique is used, module beoundaries
are selected in such a way that each modulz has "knowledge of a design
decision, which it hides frem all others”. For example, the details of
a data structure might be keot in a single module, so that other moduies
need no information about tha physicai details of the data structure
in order to operate on it. In effect, "information hiding" is a hasuristic
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technique which may aid the designer in achieving high functional
coherence of modules and module independence.

GOAL-DIRECTED PROGRAMMING

“Goal-directed programming", as advocated by Cichelli and
Cichelli (1977) also extends the concept of stepwise refinement. The
primary objective of goal-directed programming is to "graup statements
into functions or blocks each of which can be treated, at any arbitrary
leve! of nesting, as a single statement" (Cichelli and Cichelli, 1977,
p. 58). Like the other techniques considered in this section, this
objective is concerned with decomposing a design into independent
functions, or maodules.

The addition made by this technique is the concept of an explicit
statement of the goal to be achieved by the design. This approach in-
volves stating the goal to be achieved, deriving an assertion that will
be arfirmed when the goal is true, and then deriving a logical con-
dition, from this 3ssertion, that will become true when the assertion
becomes true:. By iterating these steps, the original goal is decom-
posed into subgoals. At a general level, this technique is similar
to the use of a means-ends analysis heuristic.
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DESIGN DOCUMENTATION TECHNIQUES

Design documentation techniques should also be considered
prior to a discussion of formal design methodologies. A variety
of such techniques has emerged, with widely varying information
content. Like the informal design techniques of the previous sec-
tion, these documentation techniques have greatly influenced the
software development process. Because they may very well constrain
or "lead" the designer, or at least focus the designer's attention
on particular aspects of the design, documentation techniques are
intimately involved with the design process itself.

Pad
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Both graphical and verbal documentation techniques are in
widespread use. These are not mutually exclusive, since the graphi-
cal techniques invariably contain verbal information, and the verbal
techniques often make use of spatial cues, such as indentation, to
convey information. The most familiar graphical technique is the flow-
chart (Figure 4a). Flowcharts are used less often for high-level soft-
ware design than for detailed program design. This is primarily because
flowcharts emphasize the flow of control, rather than program structure.

Another graphical technique which is widely used for software
design is the "structure chart". A simple structure chart was pre-
sented in Figure 3a. Unlike the flowchart, the structure chart empha-
sizes the basic function of each software module and its relationship
to other modules, but contains 1ittie information about the flow of
control. In Figure 3a, for example, the "INDEXER" module may call any
of the other five modules, as needed, and does so by transferring con-
trol to the called module. However, the figure does not explicitly
state whether all modules are used, in what order, or how often.

Aot gk, NS B T o e
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Several variants on the basic structure chart have attempted to
incorporate some additional information about control flow. Wnile
avoiding the detailed control flow informat-on commonly found in fliw-
charts, several groups have adopted structuce charts with logical “"and"
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(a) Flowchart

E>1 NO

7 |

YR3

INTERCHANGED

& FALSE

{ RETURN )

TABLE(L) >
TASLE(1 1)

INTERCHANGED
& TRUE

TEMP & TAQLE(T)
TABLE(1) & TABLE(L +1)
TABLE(1+1) ¢ TEMP

I1€1-1

S

(b) Program Design Language

SORT (TABLE, SIZE OF TABLE)

IF SIZE OF TABLE » 1

DO UNTIL NO ITEMS WERE INTERCHANGED
DO FOR EACH PAIR OF ITEMS [N TABLE (1-2, 2
3. 34, ETC)
IF FIRST ITEM OF PAIR > SECOND (TEM OF
PAIR
INTERCHANGE THe TWO ITEMS
ENDIF
ENDDO
ENDDO
ENDIF

Figure 4. Flowchart and Program Design Lanquage
Representatives of a Simple Sorting Algorithm
(from Caine & Gordon, 1977).
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and “"or" symbofs, and with explicit indications of iteration. For
example, Figure 5a (from Bell et al, 1977) contains a structure chart
with logical "and" ("&") and."or" ("+") symbols. Figure 5b
illustrates Jackson's (1977) approach, in which asterisks ("*") are

IR

S

% used to indicate iteration (the "Process Record" block might be read,
% “Process each record in turn"), and small circles are used to indicate
% "selection" (either "Process Issue" or "Process Receipt").

A

2.

The principal verbal design documentation method is the “Program
Design Language", or PDL, shown in Figure 4b. The figure shows a PDL
version of the sorting algorithm of Figure 4a. PDLs are similar to
programming languagas insome respects, but are usually much less formal.
An informal PDL might involve a specified set of control constructs
(e.g., IF. ..THEN...ELSE, DO WHILE, etc.), but o*herwise leave the de-
signer free to use any wording which seems aroropriate. There is
evidence that the use of PDLs, rather than flowcharts, during detailed
algorithm design results in superior design performance (Ramsey et al,
1978), but no controlled research on PDL use for high-level design tasks
is known to us. It is clear, though, that the PDL concept can be used
at any level of design, since it can be used in such a way as to empha-
size either modular structure or flow of control, as desired.

SRR 3‘ e

A flowchart-like approach which also attempts to capture some
modular-structure informatiorn is the "Chapin Chart" (Chapin, 1974)

illustrated in Figure 5a. This approach uses embedded rectangles to
show containment of procedural steps within a program module, and
utilizes special conventions for "DO UNTIL" (slashes at left of re-
peated block), "IF...THEN...ELSE" (binary question, with two columns

to indicate actions for the two possible conditions), and reference to
a procedure defined elsewhere (name of procedure in ellipse). To make
the example clezrer, the corresponding Program Design Language speci-
fication is presented in Figure 6b. The Chapin Chart is an improvement
over standard flowcharting in some respects. but it is rather cumber-
some. It does not appear to be in wide use at present.
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E (a) Chapin Chart (from Chapin, 1974)
; ’ ( exampeg )
%
STARTUP
Prapare 1.0Q;
cpen fils; @
clesr counters
35 MAIN
gzi 7 5 Endoffileonresd (D
?{% ; ; [ Read 2 racord
E // Date between May
55 e tanduly 312 @/
ii ;; Write
; 7/ { PROCESS ’ error
. /7 - : message
(38 // .nght
k 77 calumn @ |
WRAPU?
Close file;
display countars;
display end message;
close -Q
END

(b) Corresponding PDL Description

EXAMPLE: PROCELDURE;
STARTUP:
PREPARE I-0;
OPEN FILE;
CLEAR CQOUNTERS;
MAIN:
DO UNTIL END OF FILE ON READ;
READ A RECCRD;
IF DATE BEIWEEN MAY 1 AND JULY 31
THEN CALL PRCCESS;
ELSE WRITE ERRCR MESSAGE;
END;
WRAPUP:
CLOSE FILE;
DISPLAY COUNTERS;
DISPLAY END MESSAGE;
CLOSE I-0;
END EXAMPLE;

Figure 6. Simple Example of a "Chapin Chart"
with Corresponding POL.
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The HIPO (Hierarchy plus Input-Process-Qutput) chart is a
graphical documentation technique with a somewhat different erpha-
sis than any of the techniques already discussed. In its most
common form {see Figure 7, from Stay, 1977), the HIPO chart identi-
fies the input data elements, the output data elements, and the
processing components of a software module, but contains 1little or
no information about data structure. Modular structure is conveyed
somewhat implicitly, in that each processing component (e.g., "Vali-
date receipt items") can be further defined by a separate HIPO chart,
if desired. Standard HIPO charts contain virtually no flow-of-control
information. The primary emphasis in HIPO charts is on data flow, an .
aspect of the design which is not significantly addressed by the docu-
mentation methods previously discussed. Thus, the HIPO chart in the
figure indicates that the subprocess, "validate receipt items", receives,
as input, both "purchase orders" and "receipts". It produces, as output,
“error messages" and "valid receipts". The "valid receipts", along
with "price master" information, are used by the second subprocess to

produce "gross item price” information, etc.

Although HIPO charts omit some relevant aspects of the design,
they are very readable, and may be supplemented by information of other
types (e.g.. data structure definitions and procedural specifications
of the subprocesses). One extension which is receiving attention is
the use of a PDL specification within the "Process" block itself, rather
than a simple list of process componants. This provides flow-of-control
information, and makes the nature of the process clearer, but is often
limited by space constraints.

B

The HIPO chart appears to be the only major documentation tech-
nique which fully combines data flow ‘nformation and software struc-
ture information in a single figure. When other documentation techniques
are used, data flow is often specified in designs by use of a separate
table or graph. For example, Figure 3b illustrated the use of a data
flow table in conjunction with a structure chart. Directed graphs,
or "bubble charts" are sometimes used for this purpose.
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Figure 7. HIPQ Chart
(from Stay, 1977).
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Data structures can be described either verbally or graphi-
cally. Typically, a verbal description is used in high-level design
documents in which the emphasis is on the overall data structure
(e.g., Figure 3c). Later .n the development cycle, when details of
record layouts are known, graphical techniques may be employed as
in Figure 8 (from Wasserman, 1977). Graphical descriptions are
particularly helpful when complex list structures are used, since
compiex pointer relationships can be indicated by arrows.
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In certain specialized application areas, such as programming
language processing, specialized and relatively sophisticated design

w
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e e ML,

documentation techniques may be used. One such technique is illu-
strated in Figure 9. This example is taken from the design specifi-
cation of a FORTRAN-based precompiler (Otey et al, 1978). The speci-
fication method involves the use of a formal language grammar which
describes the allowable statements in the precompiler language. In

the examplz (Figure 9a), the allowable forms of an "IF...THEN" or
"IF...THEN...ELSE" statement are defined. In addition to this

syntactic information, the grammar is "augmented" with semantic informa-
tion which defines the behavior of the precompiler when such an "IF"
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statement is found. These actions define the meaning or effect of the

statement, and ave specified with a set of specialized grammar elements
and through invocations of a set of "primitive" functions. The primi-

tive functions can be defined 1in any way convenient for the designer.

In the example, they are defined via ar informal PDL (Figure 9b).

More detailed information about this specification method can be found
in Otey et al (1978) or Ramsey (1974).

The emphasis in this specification method is on the flow of
control. Modular structure is less important in this application,
since all grammar "rules" are recursive -- that is, a rule can invoke
itself, either directly or through another rule. Any data structures
used in this specification are defined separately.
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Figure 8. Example of a graphical data structure description
(from Wasserman, 1977).

»

B S b

>

sinseceai i‘i‘. ) Wy S

HISDAG?IEBESTQﬁﬁLiTY?RACTICABLE
. o ise ‘uiODDC .

FROM COrY riadons

Sttt i s

e

{,
3

ot

T R SRR T ARG TR
h” ' N PO R - .



R e TR

%

N

R

Zhs

T

7

A 030
TR

T P A o O ORI L

Loy z e ———— e

R RPN NS SR TA ot i g

(a) Augmented Grammar Specification for "IF" Statement

IF_STATEMENT :=

"IF"
B00LEAN_EXPRESSION <ERROR(3Q)
“THEN" +ERROR(33)

<00 (PUSH OPERATION_TRUE _FALSE _INDICATOR ONTO BOOLEAN _TRUTY_STACK)
( .TEST(OPERATION TRbE FAL:‘ ’VDICATOR = “FALSE"™)
«SCAN_TO LOCAT’OV(1)
' JTRUE )
STATEMENT
«LOCATIONCT)
«D0(POP TOP ELEMENT FROM BOOLEAM _TARUTH _STACK AND SAVE AS
OPERATION_TRUE_FALSE IVDICATOR')
(¢ "eLSE" /* OPTIONAL ELSE (LAUSE ¢/
¢ TESTC(OPERATION _TRUE _FALSE_INOICATOR = “TRUE™)
«SCAN_TO LOCATION(Z)
v TRYE )
STATEMENT
! JTRUE )
<LOCATIONC2) ;

(b) PDL Specification of Primitive Functions

FLTOPS PRINI TIVES

.SCAN_TO_LOCATION (ARGUMENT):

FELRAZZ IR R 222 R Al R RS 2222 A R R R R AR 222222222 X i

/* DISABLE ALL FLTOPS OPER ATIINS GXCEPT SASIC FCF PARSING, «/
/= UNTIL CORRESPONDING LOCATIIN (IODENTIFIASLE 3Y NUMERICAL */
/* ARGUMENT) OF SAME INVOCATION OF SAME RULE IS REACHEO. */

A2 2222222 222222 2222 2R R XTI R 2 P RS R A2 RS R ST SIS X YY)
IF FLTOPS FUNCTION = SYNTAX OR SCAN THEN RETURN;
ELSE 00;
SAVE FLTOPS FUNCTION VALUE AND RESET FUNCTION TO SCAN;
SAVE INFORMATION IND ICATING THE RULE AND LOCATION AT WHICH
FLTOPS FUNCTLONS WILL RESUME IN LOCATION_IMFORMATION;

END;

END .SCAV_TO_LOCATION;

CLOCATION (ARGUMENT):

IEZZIA2 2222222222222 22 222 RITA RZZ2Z Y SR R 2R 2 22l X2 2 AR A2 2R Y

/* SEE .SCAN_TO_LOCATION, */

IAZAE 22222 R 2222222 22X 2222 2222 R XSRS TR 2 2 22 22222 2222222 2R ¥

IF FLTOPS FUNCTION NOT E£aUAL TO SCAN THEM RETURN;

IF CURRENT LOCATION CORRESPONDS TO THAT INOICATEC IN LOCATION_INFORMATION

SAVED 8Y THE LAST I[NVOKED ,5CAN_TO_LOCATION PRIMTTIVE
THEN RESET FLTOPS FUINCTLON TO SAVED VALUE;
ELSE RETJRN;
END JLOCATION;

Figure 9. Use of Augmented Language Grammar and
Supporting Primitives to Describe a
Precomniler.
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It should be clear, from the material presented in this
section, that there are a wide variety of design documentation
techniques in common use (many less common techniques were inten-
tionally omitted from this discussion). These techniques may be
verbal or graphical, and they differ in their relative emphasis on
modular structure, flow of control, data structure, and data flow,
as summarized in Figure 10. Although there is a good deal of per-
sonal preference and "institutional inertia" involved in the se-
lection of documentation methods for particular projects, it is
also clear that no one documnentation technique is appropriate for
all types of design. The selected technique(s) must convey the
salient features of the design. Any of the basic classes of design
information may be highly relevant or even irrelevant to some class
of design problem.
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OESCRIPTIONS OF THE FCRMAL DESIGN METHODOLOGIES

This section contains descriptions of the four formal software
design methodoicgies which were surveyed in this study. For the most
part, evaluative comments are deferred until the next section of the
paper. The amnunt of descriptive information provided here is a func-
tion of the level of detail to which the approaches have been developed.
For example, there is more detail here about "Structured Design" than
about other approaches because the published literature describing the
approach contains more detail. :

Before proceeding, tne reader should be aware of several terms
which will be utilized in discussing the design methods. These terms
are concerned primarily with evaluation functions, and represent con-
cepts relevant to many of the design methodnlogies, although special-
ized terminology may be uced for these concepts in individual methodo-
logies:

(1) [INDEPENDENCE is ¢ qualitative, and usually subjec-
tive, assessment of the degree to which the design !
of one module is unaffected by the design of other
modules. In general, a modular decomposition which
maximizes independence is desirable.

(2) FUNCTIONAL COHERENCE is a qualitative assessment of
the degree to which the components of a module are
related to one another and to the accomplishment of !
a single simple objective. In general, a modular
decomposition which maximizes functionai coherence
is desirable.

(3) FAN-QUT refers to the niumber of immediate descendant
modules possessed by a module.

(4) FAN-IN refers to the number of modules (in a non-
hierarchic modular structure) from which a single
module is descendant.

35
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SCOPE OF CONTROL refers to the set of modules
formally under the control of a particular
module. Module B is in the scope of control
of module A if A may directly or indirectly
invoke the execution of B. Generally, the
scope of control of a module includes the
module itself and all of its descendants.

SCOPE QF EFFECT refers to the set of all modules
whose functioning ca He affected by the behavior
of a particular modu'.s. This set is not neces-
sarily restricted to the module and its descen-
dants, but may include any other module to which
data are passed. For example, error flags might
be used to allow a module to control other
modules outside its formal scope of control.
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STRUCTURED DESIGN

The first approach we will discuss is "Structured Design" as
advocated by Stevens, Myers, and Constantine (1974), Myers (1975), and
Yourdon and Constantine (1975). This approach involves an initial con-
sideration of data flow followed by decomposition of the system under
design into subparts. These stages are applied interactively, and rather
freely, as they are required to achieve greater detail. At the higher
levels, modules are described in terms of their functional effect on the
data. The emphasis is on functional coherence of the modules and little
attention is normally paid to the flow of program execution.

Overview

In Structured Design, the designer begins with a functional de-
scription of an overall system: 1its objectives, requirements, inputs,
and outputs. The designer uses this information to determine the data
flow of the system. The data flow definition is then used to determine
preliminary module boundaries. From an analysis of data flow and identi-
fication of preliminary module boundaries, a functional description of
both modules and interfaces is produced. Structured Design uses a FLOW
DIAGRAM or BUBBLE CHART to represent data flow and assist in identifying
module boundaries. It then uses a STRUCTURE CHART to depict the modules
and their interfaces.

Depending on the properties of the system's data flow, two major
classes of design problems are recognized and a unique problem-reducticn
operator is associated with each class. These operators are TRANSFORM
ANALYSIS and TRANSACTION ANALYSIS. The principal evaluation criteria,
which are used with both forms of analysis, are COUPLING (independence)
and COHESION (functional coherence).

The technique called TRANSFORM ANALYSIS is used when it becomes
apparent that a problem decomposition produces an AND relationship among
the parts. This means *that the initial task requires the performance of
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subtask one, AND subtask two, AND so on, for each execution of the initial
task. The other possibility is TRANSACTION ANALYSIS. In this case, each
execution of the initial task only requires the performance of subtask one,
OR subtask two, OR one of the other subtasks. This is called an OR re-
lationship among the subtasks.

Transform and/or Transaction analysis are used, as appropriate,
along with a set of design heuristics, to iteratively decompose the
design into detailed module specifications. A design is complete when
a set of modules and their interfaces have been specified in sufficient
detail that the designers are convinced of three tnings:

1. Implementation of any module is a well defined task
with 1ittle impact on the implementation of any other
module if all are implemented as described.

2. Correct performance of any module (including the root
module and, therefore, the system itself) depends
only upon the correct performance of all modules to
which it fans out.

3. All modules required are defined so as to be straight-
forward coding tasks, requiring in the neighborhood
of one or two pages of source code.

Detailed Discussion

The first step in Structured Design, whether transform analysis or
transaction analysis is to be used, is the restatement of the design prob-
lem in terms of the high-level functions that will be involved, rather
than the procedures required to accomplish those functions.

As an example, consider a patient-monitoring system for a hospital.
This system should monitor, through an analog device, various physiolo-
gical readings and notify the nurses' station if any readings are outside
of a specified range. A FLOW DIAGRAM or BUBBLE CHART to represent this
problem is shown in Figure 11.

:
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factors
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nurse
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abstiract - abstract
input data transtorm outout data

Afferaent flow — ——EFTzrant Flow

Figure 11. A Simple Flow Diagram (adapied from !Myers, 1975).

Transform Analysis

When the initial levels of decomposition produce an AND type of
hierarchy, such as that shown in Figure 11, TRANSFORM ANALYSIS is suggested.
Unless experience with a particular problem area dictates otherwise, this
is the suggested way to begin any Structured Design. The following six
steps outline the general operations employed in design using the trans-
form analysis strategy.

1. The system is described in terms of its major furnc-
tional components (see Figure 11).

2. Conceptual input and outbut flows of data are identi-
fied from a functional standpoint. These streams may
separate and/or combine. They are physical where they
enter and leave the system, but become more conceptual,
or abstract, farther in.

3. The major conceptual flow of data is identified from
input toward the CENTRAL TRANSFORMS and backward from
output to the CENTRAL TRANSFORMS. For both input and
output the "point of highest abstraction” is identified.
This is the point where it enters and leaves the CENTRAL

WY L DI R PN
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TRANSFORM REGION. (Steps 2 and 3 are also indicated
in Figure 11.)

Using the above, generally depicted as a bubble chart
showing flow, combination, separation, and transforma-
tion of data, a structure is designed. This structure
depicts modules that are identified as sources, sinks,
and transformers of data. The function of each module
and its interfaces should be briefly described. The
initial design for the problem introduced in Figure 11
is shown, as a STRUCTURE CHART, in Figure 12. The
module identified as "obtain a patient's factors" is a
source (or afferent) module (it requires no inputs

from other modules), "notify station of unsafe factors"
is a sink (or efferent) module (it produces no outputs)
and "find unsafe factors" is the transform module.

The box below the modular structure specifies the data -
flow within the design. This information could also be
represented directly on the arcs connecting the modules
(as done by Yourdon and Constantine), but we will use
this type of notation (as used by Myers) primarily to
increase clarity.

‘*Ac,‘ £ “ﬁ‘ﬁ‘i‘ﬁ - 2

5. Breadth first, and level by level, each of the modules
is expanded into subfunctions using all of the preceding
steps. The purpose of this expansion is to identify a

Aty ik ails

structure that contains the most peripheral source and
sink modules and contains all of the functions necessary

-~

to support,the data flow described in Steps 1 to 3.

TP

6. A list of design heuristics, including great attention
to module independence and functional coherence, is used
to aid decomposition, at levels of greater detail, of
the transform modules obtained in Step 5.

A complete structure chart for the system considered in this section is
illustrated in Figure 13.
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Transaction Analysis

When Steps 1 to 3 of Transform Analysis produce a data flow
graph with a transform that splits an input data stream into several
discrete output streams, then TRANSACTION ANALYSIS is suggested.
Such a data flow graph is illustrated in Figure 14. In this case,
"T" is the TRANSACTION CENTER and the "(® " symbol is used to indi-
cate that "W"', "X", "Y", and "Z" are all disjunctive (an "OR" relation-
ship). This structure should be compared with the linear ("AND" re-
lationship) shown in Figure 11.

Anotnher way in which TRANSACTION ANALYSIS might be suggested is
when several different processing states treat the same set of input
data in different ways. When the system is better conceptualized as
a recognizer and dispatcher of different information sets to different
subfunctions, an analysis of these transactions is the suggested design
strategy. Naturally, the transaction structure will also consist of
components, and the design of any subcomponent may well return to the
transform analysis strategy. Using transaction analysis, the follow-
ing steps are taken:

1. The sources, both data and preconditions, of each
transaction are identified.

2. A structure is identified that separates the func-
tions of transaction, identification, analysis, dis-
patching, state change, and transformations.

3. Jhe different transactions and the processing that
each triggers are identified.

4. Ways to functionally combine processing tasks are
given careful consideration, but only after Steps
1 to 3.

5. A module is specified to process each transaction
or other functional task that has been identified.
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6. Levels of greater detail are reached in two steps:

a. First each transaction module is subdivi-
ded into action modules,

b. Then each action module is described in
detailed steps.

Similar actions and common detailed steps may be
shared by these two levels.

As in Transform Analysis, the design is represented as a struc-
ture chart and the principal evaluation criteria are coupling and
cohesion.

Evaluation Criteria

Structured Design is primarily a collection and description of a
set of evaluation and guidance heuristics. The two primary criteria
by which module boundaries are initially defined,and by which modules
and their interfaces can continue to be judged, are independence and
functional coherence. Each of these will be described in structured
design terms.

2
o}
3
2
K
9

First, however, a perspective on these measures should be intro-
duced. The measures are subjective evaluations, intended to be made by
experienced designers on their own or others' designs. When a module
is being judged, the interfaces of the module, its scope of effect, and
scope of control are all important. However, it is also important to
consider how, and how well, these things are contained in the module's
parent module. Likewise, especially in the determination of functional
coherence, the components of a module and their relationships should

LR O

i e

be examined.
Coupling -- COUPLING is the term used to denote independence in the

structured design literature. . The objective of minimizing coupling
among modules is intended to maximize the independence of modules.
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Six categories, or levels, of coupling are possible. When
evuluating the coupling of a module it is considered pairwise with all
other modules to which it is related in any manner. The principle
underlying this criterion is that coupling should be minimized and that
certain types of coupling are preferable to others. Furthermore, many
of the design heuristics to he described later place additional restric- ;
tions on module coupling. 1

The categories, or levels, of coupiing are described below
in the order of more desirable tc less desirable.

1. DATA Coupling occurs between two modules that both
reference the same data variable(s) or structure(s).
In this case, the data are local to the coupled
modules and inaccessible to others.

2. STAMP Coupling arises when the mechanism for making
data available to a limited set of modules does ex-
clude others from access. For example, named COMMON
in FORTRAN.

These two types of coupling are distinguishab.e only in certain
impiementation environments. Certain parameter passing mechanisms
are such that either description might apply. In generé1, the
more advanced programming languages have efficient mechanisms for
restricting the sharing of information to p:rameter passing
without either form of coupling, or to data coupling only.

3. CONTROL Coupling describes the relationship that exists when
the results of an operation in one component are used to
direct processing in another component. This type of coup-
1ing is worst between seemingly unrelated components. Be-
tween a module and one of its immediate subcomponents, con-
trol coupling is more acceptable. If at all possible, how-
ever, it should be limited in the direction of cause and
effect so that module controls component rather than the
reversa.
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4. EX1ERNAL Coupling occurs by way of a mechanism that allows one
module to declare free access by other modules to its cecntents.
Generally, an assembler language must rely on this type of
coupling because more sophisticated mechanisms are unavailable.

Clearly, some form of control and external coupling must exist
between any two related modules. However, when the passing of
control is implicit, or along well established lines, and the
permission and access conventions for data are disciplined and
adhered to, then coupling is properly minimized. When mechanisms
exist that allow unconventional coupling, then the job of evaluation
becomes more difficult.

5. COMMON Coupling is made possible by mechanisms such as FORTRAN's
blank common or uncontrolled use of "global" variables.
Assembler and machine languages usually have no mechanism to
prevent it. It occurs when data sharing and communication are
obscured through the use of completely uncontrolled channels.

6. CONTENT Coupling occurs when one module refers to something in
the domain of another with no explicit permission by the second
module.

Both of these types of coupling arise through a lack of convention
or mechanism for communication between modules. In certain 2aviron-
ments the only way to avoid dependencies of these kinds is to make
the necessary conventions and mechanisms a part of the design.

Cohesion -- A design may be decomposed into a set of modules which are

highly independent but which are still low on the scale of functional co-
herence, cr COHESION. Independence {coupling) only requires that a sharp
and well defined line be drawn between each module and all others. Func-
tional coherence addresses what a module does and why it does it. Perhaps
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the single most effective measure of functional coherence is che number
of words it takes to describe the module in the terminology of the
design. Yourdon (1976) suggests that “The function of & maximally co-

hesive module can be described in one sentence with a transitive verb
and a single, nonplural object."

The following descriptions are used to more closely describe the

cohesiorn of a module. These descriptions are meant to apply to the com-

ponents of a module, why they were brought together, and what they accom-
plish as a whole. Generally, when one description applies, those lower in
the list will alsc apply, but only the first is used fcr avaluation. The

descriptions are saven points on the structured design scale of cohesion.

The scale is not linear. A large gap exists between numbers one and two,

and another large gap betweer five and six. High cohesion is achieved

when the relationships among components of a module are near tne beginning
of the scale.

1. Structured Design assigns highest cohesion (calied FUNCTIONAL
cohesion) to a module whose components combine to form a
conceptual unit. This is why the number of words to describe
it is a powerfui test. However, in a complex desian even a
tightly bound conceptual unit may be very context dependent.
Modules found in programming libraries are generally those
that are high in both independence and in cohasion.

2. SEQUENTIAL cohesion occurs when a module performs more or less
than a single unitized function and i3 bound together by the
fact that its components are sequential steps that go beyond
such a function, or make up only part of such a function. In

this case there must still be a close association between the
module and a unitized function.

3. When a module contains a set of components that are primarily
related to each other because thev share a common set of input
and/or output data, the module's strength or cohesign is
COMMUNICATIONAL in nature.

v
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4. If a module performs a set of functions which are related only
by virtue of being steps in a procedure, but the module does
not perform a complete function, it has PROCEDURAL cohesion.

5. When data structure does not bind the components of a module
together, they may be bound by a common occurrence with respect
to time. This is called TEMPORAL cohesion. "Initialization”
is a term that lacks conceptual unity, and an initialization
module would usually fail the tests of functional, sequential,
and communicational cohesion. "Initialization" describes a
temporal binding. Thus the major description of a module, the
one most characteristic of its purpose, is the one to be
analyzed in determining its level of cohesion.

6. A moduie is said to have LOGICAL cohesion when it is bound
together on the basis of some logic process shared by all of
its components. The module may be characterized by some
descriptive phrase, but not one that has unity in terms of
function, sequence, communication, or time, (for example,

“recover from error"; or "initialize device" when several
devices exist). If the higher forms of cohesion are missing,
the components included in such a module are going to be
coupled together on a basis that is very likely to change.

7. When none of the above describes the connection between compo-
nents of a module it must be assumed that they are there by
coincidence (COINCIDENTAL cohesion). Such a module can seldom

be described in any simple terms. For reasons of optimization,

or other considerations that take place during implementation, a

code mocule might very well fall into thts category. However,

3 design module never should.
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Structured Design Heuristics

Much of the literature an Structured Design is devoted to the
presentation of heuristic guidelines. These guidelines are not unique, |
each is compatible with the other design methodologies, and each has
appeared many times in the literature of the last ten years. Nor is the
list complete; it is intended rather to explain some of the most important

2 ‘ concepts in this area of Structured Design. It reads like a Tist of DOs
i% and DON'Ts.

%‘ 1. Maximize the independence of each module by reducing its

ﬁ coupling to other modules. For modules that are coupled as

‘? components of a larger module, maximize the quality of their

;% coupling.

£

2. Maximize the functional coherence of each module by insuring
that its components are related on the basis of a conceptual

e Y

problem. Input-Process-Qutput is often the most economical
structure.

ﬁ‘ unity. Strive for the attributes high on the 1ist of both
3 cohesion and independence.

o)

g‘ 3. Match the structure of the design to the structure of the

4. Keep the size of a module in the neighborhood of from 10 to 100
1lines of code or description.

5. Keep the scope of effect of a module within its scope of
control.

6. Try to eliminate the need for error flags, especially among
several levels of callers.

7. Provide a simple solution to the immediate problem; do not
attempt to generalize.
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Reduce complexity by isolating dependencies and assumptions, as
by "hiding" them within a minimum of modules,

Eliminate duplicate functions, but not duplicate code. Strive
for a set of unique modules with high individual cohesion.

Strive for a "Mosque Shaped" design.

a. Check unusually high fan-out or fan-in to determine if a
Tevel is missing.

b. Strive for a fan-out in the neighborticod of from 3 to 9
modules.

c. Early in the design err on the side of too much fan-out.

d. Llater in the design err on the side of too much fan-in.

Keep the number of parameters to a module small, but keep each

item separate.

Within the design framework, aliow for the production of:

a. Documentation, keeping separate where the design is going,
where it is, and what has been "finalized."

b. Support tools and project conventions that are necessary
to enhance the implementation environment so that the

methodoTogy can actually be carried out.

c. Module libraries that provide for an exchange between
projects and encourage the production of highly independent

and coherent modules.
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THE JACKSON METHODOLOGY
Overview
Using Jacksen's (1975, 1977) methodology, the designer begins

by specifying input and output data structures. The data structures
must be hierarchical, and are constructed using only sequence, iteration,

A7

§1 and selection. With two basic exceptions, the modular structure of the
% software will be developed to correspond fully to the data structure,

%‘ with decision points corresponding to the iteration and selection points
§ in the data structure. The exceptions occur when input and output data
%~ structures do not correspond ("program inversion" is used here) and

when the information required for a decision is not available at the
point at which the data structure requires the decision (commitment
to one alternative is used, wizh "backtracking" as necessary).

Detailed Discussion

The Jackson methodology is advanced as a rational and teach-
able methodology that is practical and does not depend upon the insight
or inventiveness of the designer. This necessarily places a limit on
the size and complexity of designs to which it is addressed. So far,
its orientation seems to be toward the commercial data processing shop
and the applications programmer. It is most clearly suited to the design
task facing an individual programmer who has been given a module to code.
In addition, it requires that the problem statement be in terms of well
defined data structures such as those available in an ongoing data pro-

cessing environment, or perhaps those defined within the context of a
larger project.

Given that the scope and complexity of the problem match these
limitations, the Jackson approach rests on a single fundamental assump-
tion and provides three alternate strategies for the design process.
The assumption is that both procedural code and data for any given
problem can be adequately described by a hierarchy of three structure
components. These components are sequence, iteration, and selection,
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These constructs are familiar in the context of program flow
of control, and there is fairly widespread agreement that they are

an adequate and appropriate set of constructs in that context. Because
Jackson's approach is predicated on a one-to-one correspondence be-
tween data structure and program (design) structure, this methodology
also assumes that these three constructs are adequate for describing
the logical data structure. The data structure is assumed to be ex-
pressible as a serial file whose internal logical structure can be
described with a hierarchy of these operators. Thus, a simple file
might have a header record followed by (sequence) a group (iteration)
of one or more records of either (selection) type A or type B.

A Jackson design problem is first completely specified in terms

\yof its input and output data structures. The data structures are defined

as hierarchical decompositions of serial files. This means that for each
input and output stream a hierarchical structure will be used to completely
specify it. The terminal elements in each hierarchy are single data items
or item types. They are joined together by sequence, iteration, or se-
lection into larger units that can be called records, lines. pages, or
whatever. The intent is that each joining produces a higher-level con-
ceptual unit of data.

When the data structures are defined, the program structure is
created from them. The purpose of the program, of course, is to produce
the mapping of input data to output data. It is expected that for each
sequential, iterativa, or selection component of the data structure theie
will be a corresponding program component.

Input-to-output mappings fall into one of three categories,
according to Jackson. For each of these there exists a design strategy.
The mapping may be straightforward, involving no data inversions or other
abnormalities. When this is the case a direct correspondence between
components of the -ata structure and components of the program structure
is expected. The other two categories (not mutually exclusive) are
caused by "structure clashes" and the need for programmatic backtracking.
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Structure Clashes

A STRUCTURE CLASH occurs when an input-to-output mapping
requires reordering, recombination, or synchronizetion of input
item to output item. A situation of this type exists whenever the
input and output data structures do not correspond all the way down
their hierarchic structures to the lowest data element. As a very
simple example, consider a program which must read in a matrix by
row and write it out oy column. The technique used to resolve such
problems is called PROGRAM INVERSION. This may take several forms,
involving intermediate files, coroutines, or most commonly, sub-
routines. In each case, though, the incompatible structures are
isolated from each other by utilizing two program modules which
communicate in terms of logical data elements not tied to either
structure. This communicatio. is made possible by a decomposition
of the input data into logical data elements by one module, and
their recombination into an output structure by the other.

L

e

Backtracking

Anotner technique often required when using Jackson's Method-

ology is BACKTRACKING, which refers not to the design process, but
% to an action which will be taken by the system under design. As a
i simple example, suppose that the system is to read a batch of cards,
"3 and cannot determine whether the batch is of type A or type B until
Ee the entire batch has been read. Because of the basic requirement
that the system's modular structure correspond directly to the hier-
archic logical structure of the input file, the "look ahead" approach
is somewhat incompatible with Jackson's methods. He prefers, instead,
to commit to one alternative or the other at the outset, thus preserving
an exact correspondence of "select" points in the modular design and
3 L in the input data structure. When the selected alternative proves
g; B to have been incorrect, backtracking is employed to recover from the
B incorrect decision and implement the correct one.
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Backtracking, *hen, is handled like ordinary selection, but in
advance of some of the decision criteria. One alternative is chosen
and processing is directed down that line. The alternative to be pro-
cessed is selected by the designer for a combinaticn of reasons. It
may be the only case the designer initially considers. It may be the
one most easily recovered from. Or it may be the most probable one.

In any case, when the backtracking situation is identified, it is de-
signed in three phases. First, the alternatives and criteria for their
selection are listed, and one is chosen. Second, in the processing of
the default alternative the selection criteria for the other alternatives
are encountered. These are "quit conditions" for the default, and are
used to select their own alternative. Third, there may be side effects
of having processed the default. These may have to be undone and re-
stored, or they may contribute to the processing of the new alternative.
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Jackson's Procedure

Considered in more procedural detail, the Jackson methodology
proceeds through three phases. First, the data structures are defined.
The designer looks for correspondences between the structures, seeking
relationships between the components of one structure and those of
another. When correspondences cannot be found, structure clashes are
identified and an appropriate program inversion strategy is selected.
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Next, the program structure is created on the basis of the corre-
spondences found in the data structures. Through the examples he gives,

Jackson's approach seems to require a program structure with the follow-
ing characteristics:
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1. Each module is based on a corruspondence between data
structures and is, therefore, likely to be a trans-
formation in a data flow pathway.

2. Each module is only described by a simple designa-
tor and is, therefore, 1ikely to be a conceptual unit

B
§ based on its function.
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3. Module boundaries correspond to subdivisions in
the data structure, increasing the probability
that they are bound on the basis of functional,
sequential, or communicational unity.

4. Jackson's structure notation provides no facility
for describing module interfaces. This may encour-
age the designer to keep them simple or it might be
a source of problems. There is, however, no apparent
reason that a separate interface table (as in Figure
11) could not be used in conjunction with this nota-
tion.

5. The structure notation (Figure 5b) provides only
the program logic of sequence, iteration, and selec-
tion. This lends itself most readily to a block-
structured program during implementation.

The third stage is that of 1isting program steps. This corresponds
to design on a level of greater detail than the second stage. The program
steps required to produce the input-output data transformations are listed
and assigned to program components. Program steps are classified as pri-
mary and secondary. Primary operations have to do with logic and data
transformation. Secondary operations are those associated with reading,
writing, and moving about in the data structure. Program steps are assigned
to program components on the basis of their class with respect to the
function of a module, and on the basis of where they fit with respect to
sequence, iteration, and selection.

The extensive attention paid to evaluation technicues and heuristics
in Structured Design is unnecessary in Jackson's approach. As long as the
design problem meets Jackson's initial criteria and fits into the intended
scope and complexity, it seems that the function of the heuristics is
built into the design procedure and that, in most cases, the method should
produce designs with the characteristics ¢f independence and functional
coherence. Whether the development of these designs is easy cr difficult
is another matter which will be considered in a later section.
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THE "HIGHER ORDER SOFTWARE" APPROACH

Th. Integrated Software Development System/Higher Order Software
(ISDS/HOS) approach (Hamilton and Zeldin, 1976b) is included here as a
representative of several methodologies developed especially for use in
very large software design and development efforts. These methodologies
are all broader in scope than the simple design methodologies already
discussed. Although their properties vary, they tend to: (1) make
significant use of automated tools, (2) address software development from
the software design phase all the way through implementation including,
in some cases, testing, and (3) concentrate heavily on the "validation
and verification" aspects of software development.

Although these approaches are not specifically design methods,
they do provide varying degrees of guidance to, and constraints on, the
designer. In addition to ISDS/HOS these methods include: (1) The
Software Requirement Engineering Methodology (SREM; 8ell, Bixler, and
Dyer, 1977) developed for the Army Ballistic Missile Defense Advanced
Technology Center (this is the most heavily automated methodology of this
group); (2) The Software Development System (SDS; Davis and Vick, 1977)
developed at the Army Ballistic Missile Defense Advanced Technology
Center; (3) The Information System Design and Optimization System (ISDOS;
Teichroew and Sayani, 1971) developed by Teichroew and others at the
University of Michigan; and (4) The Structursd Analysis Design Technique
(SADT; Ross and Schoman, 1977) developed by Softech (the least auto-
mated and formalized of the group).

These methodologies are all oriented toward the structuring of
design and management of large software design efforts. They all pay
particular attention to the early stages and the Formal specification of
requirements. These methodologies came into axistence as a result of
experiences gained on large projects and are attampts to remedy the major
problems encountered by such projects. There is wide agreement that most
failures in large projects during the detailed design, implementation, and
integration stages are the result of poor requirements specification and the
Failure to maintain an overall project coherence.
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Because they are concerned with large design projects, the "macro
methodologies" specifically address the following topics:

a. Design tracking.

b. Visibility and impact of changes.

¢. Control and management of the design with respect to project
personnel.

d. Automating design and implementation tasks.

e. Establishing a framework and set of standards
that prohibit certain problematic courses of action.

The larger the system under design, the more impcrtant are the
design environment and the right management elements. Peters and Tripp
(1977) concluded their review with the observation that "successful
application (of methods) occurs only in supportive environments."
Certainly, the documentation of these methodologies contains much on the
subject of management guidelines, but there is 1ittle departure from, or
addition to, the standard literature on management techniques. What sets

these methodologies apart, especially ISDS/H0S, is that specific ground
rules are defined based on a formal model.

Overview

"Higher Order Software" is the name of an overall approach to soft-
ware development (and, incidentally, the name of the company which has
developed the approach). The Integrated Software Development System (ISDS)
is a system of software development tools used in conjunct%on with this
approach. The designer who uses this approach is thus affected by the over-
all HOS philosophy, by the HOS model, and by the constraints and aids of
ISDS. Within ISDS, there is a language (AXES) which is to be used by the
designer to specify the requirements of the system under design. In gpeci-

fying these requirements, the designer is assisted by ISDS, with which he
or she interacts.
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The HOS model contains a number of definitions, axioms, and

decomposition rules which specify the allowable relationships betwean

a nodule and its submodules, between a module and its input and output

data, and generally, between pairs of modules which communicate with

each other. As will be seen, the rules which must be followed by the

HOS designer are more formal and more constraining than those of, for

example, structured design. They are also rigidly enforced by the soft-

ware aids.

HOS System Development Model

Before discussing ISDS/HOS as it affects the design phase, it is
appropriate to introduce the reader to the overall plan and philosophy of
the methodology. The HOS approach involves four phases:

1. Concent Formulation
A complete set of system requirements is detarmined. BRoth
mandatory and candidate requirements are considered. The
designer draws up the functions to comprise the target system
in the form of a "control map" not unlike the structure chart
used in Structured Design. In this process, the designer re-
cords all guestions that arise and sets up a standard way ofF
recording the answers as they are found. Several jterations ot
this produces the finalized specification of the system. This
final specification is defined in AXES, the formal language
used in the methodology. The specification defines the target
system, development standards and processes, and support systems
and tools.

2. Program Validation
This phase is based on the AXES specification. It consists of
a detailed analysis of the system functions and interfaces.
High-level resources are allocated to the top layer of system
functions. Simulation performance testing (manual or automatic)
is done to study fault tolerance, error detection, timing and
accuracy, security requirements, and other aspects of target
system reliability. Development and suoport systems that must
be built are identified, scheduled, and begun.
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3. Full-Scale Development
The inputs to this phase are the system, completely specified
in AXES, and a set of resources out of which the target system
is to be built. This phase, like the preceding two, is itera-
tive. Each iteration involves trial allocation of resources
and analysis of system hardware-software subsets. Any changes
discovered in this process may cause iteration back into either
of the preceding phases, or just another iteration of this phase.
A resource allocation tool (RAT) is used in this phase. This
tool 1is envisioned to eliminate the manual allocation of com-
puter resources to functional components of the system.
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During this phase the system specification control map is
reconfigured into a standard architectural form. This form is
hardware independent and contains as few levels as possible.
It is intended to re-express the resource requirements of the
system to the designers in an understarndable format.

The resource allocation tool uses the architectural form to
analyze the target system (control map specification) in terms
of time and memory optimization. Given specific time, memory
and other implementation constraints, an optimal software
module configuration is generated. Automation of this process
is expected to allow even the details of a particular machine
to be specified and the automatic production of executable code
from the machine-independent specification.

4. Production and Deployment
I tais phase the target system is placed into actual use.
Manuals are prepared. Feedback from initial training and use
of the system may cause iteration back into the previous phase.
When the target system is acceptabie, it is produced and deliv-
ered to the field.
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Axioms and Decomposition Techniques

In HOS the designer develops program structures in accordancs with
a formal set of design axioms and structural decomposition techniques, as
discussed below:

1. A module is the root node of a family of functions (nodal family).

2. A module's corresponding function is the functional transtform-
ation performed by a nodal family that maps an element of the
mydule's input space (domain) into an element of itz output
space (range).

3. A nodal family is constructed on the basis of rules (called

AXIOMS) which are summarized below:

a. A module has the ability to invoke and control the
sequencing of only those functions which are its immediate
offspring (Axioms 1 and 6).

b. A module controls the access rights to the variables in the
input and output space of each function it may invoke
(Axioms 3 and 4).

c. A module controls the rejection of invalid elements of only
its own input space (Axiom 5).

d. A module controls the responsibility for the elements of
only its own output space (Axiom 2).

4. A function is decomposed into its immediate offspring according
to three structures implied by the above axioms.

a. COMPOSITION. A module may be composed of two or more
functions invoked in a particular sequence. In this case,
the first function has an input space, and the last an out-
put space, identical to the input and output space of the
parent module. Intermediate results are passed as output
from one function and input to the next.

b. SET PARTITION. The domain of a module (its input space) may
be partitioned so that different variable vaiues are assigned
to different offspring functions.
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c. CLASS PARTITION. When a module nas more than nne varialie {n
its inpu: space, class partitioning may be used such that
different sats of variables are associatad with differant
otfspring functiens.

The axioms of ISDS/HOS appear to be very similar to the 'coupling"
principlies of Structured Design, althougnh they are expressad much mors
formally in ISDS/H2S. In narticular, ISDS/HUS requires adnarence to thes2
independence rules, wnereas Structured Design stipulates only that they
are highly desirable. This prcbably cesults mostiy frow the intention
that ISOS/HCS generate desiyns which are sysceptid’e to autometed anaiys<’s
and "validation and verification.” It snould be notad, though, that the
axioms and decompositior techniques 2f this methudology ran be applied in
t~e absence of any sven otitvmated tools, if desired.

The decemposition techniques are somewhat novel. They are more
formal than those ¢f Structured Design and are much more constraining.
They provide 4 very restiricted set ¢f decomposition “move" types which
can be made by the designer, but reilatively 1ittle guidance 1s provided
for determining precisely how to select and formuiate one of these "moves"
appmpriately. In relatively simple situations, such as the examples
provided i the documentation of thnis approach, selection of an appropriate
modular derorposition may be quite straightforward. In the more complex
situgtions vwnich are the primary reason for existence of the "macro
methodologies," more guidance, perhaps in the form of design heuristics,
may be needed. If the designer succeeds in applying this restricted set.
of decomposition techniques, it would appear that high functional coherence
will result almost automatically.

A final aspect of ISDS/HOS which may exert a strong influence on
the design task is the language, AXES, which is intended to allow detailed
description of the design. Although most of the purposes of AXES are those
of design documentation, thz language is alsc iatended to provide the work-

ing medium for design development. The formulation of a single language
useable as a design developmont medium, a design documentacion medium, and
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a mechanisi for automated processing of the resulting design specification
i¢ a formidable task. The success or failure of this effort may strongly
affect tne utility of this overall approach to automated aids for soft-

ware design.

As actually developed (Hamilton & Zeldin, 1976a), AXES is a rea-
sonably sophisticated language whose successful use probably requires a
designer with significant background in language theory. The language
is reasonébly compact, but its notation may be intimidating for the less
sophisticated designer. Overall, the ISDS/HOS approach makes fairly heavy
demands with respect to the theovetical background of the designe-.
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WARNIER'S "LOGICAL CONSTRUCTION OF PROGRAMS"

Warnier (1974) calls his design methodology the “Logical Con-

struction of Programs” (LCP). In terms of the scope and complexity of

programs to be designed, it is nearly identical to Jackson's approach.
Warnier is much more specific as to the design steps and stages, how-
ever, giving rules and definitions rather than relying so heavily on
examples. The terminology and notation of Warnier's book are much dif-
ferent from Jackson's. However, the two methodologies have a great deal

in common. Both are, in fact, incorporated into a single presentation
by Infotech Information Limited.

Qverview

LCP is a relatively mechanical design methodology which requires
that the designer prepare a specific set of inputs and then apply a formal
procedure which "simplifies" those inputs and transforms them into a de-
sign specification in a Program Design Lanquage. As in Jackson's approach,
the first step taken by the designer is a specification of input and output
data structures, using sequence, interation, and selection. The designer
then specifies the relationships between input and output structures.

These relationships are described via formal logic statements. A series
of prescribed operations are then performed to reduce the set of relation-
ships to (logically) simple form, to develop from the data structures

and relationships a program structure, and to evolve procedural statements
(in a PDL) which fi11 out that structure.

Detailed Description

There are five phases in Warnier's design methodology. The first
three of these correspond to design on levels of greater detail. The
fourth is essentially a finalization of the design using a pseudo code.
The fifth stage is verification. In Warnier's terms, this means that
the final instruction sequence is checked by hand against the previous
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levels of detail, the program skeleton, and that is checked in turn
against the analyzed data structures.
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The first step in LCP is to assess the data structures (see
Figures 15 and 16). As in Jackson's methodology, this is a decomposi-
tion producing, in most cases, a hierarchy. Each point of decomposition
is based on repeated information or alternate possibilities. Items and
sets of items (at the appropriate level) are listed sequentially. Thus
the structures of sequence, iteration, and selection are, again, the
building blocks. Assessment of data structures, in Warnier's approach,
means not only defining the structures but considering correspondences
of the input and output structures.
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Warnier devotes considerable attention to the systematic and formal
analysis of these correspondences. Although input and output data struc-
tures are internally simple, the relationships between them can be complex,
when these two structures involve noncorresponding iteration and alterna-
tive constructs. These relationships are expressed in Boolean algebraic
form, so that a statement of one such relation might be expressed (in words)
as, "the output data set will contain a record of type X if the input data
set contains a record of type A and either a record of type B or one of
type C." A complete set of such output-to-input relational expressions
is developed for any problem involving complexities of this sort. Such
expressions can be represented in truth-table or decision-table form,
and are susceptible to simplification via the ordinary operations of
Boolean algebra.
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The  second step is to compose a skeleton program structure (see
Figures 17 and 18). This means that, based on the structure of the data,
the program logic (flow of execution) is to be outlined. Repeated items.
will require a program loop. Simple alternatives will require a decision
and a pathway for each. In instances involving complex output-to-input
relationships, the resulting program structure is determined from the
Boolean or truth-table analysis discussed above. In some complex cases,
special rules for deriving the program structure are presented which may
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10 Begin Program
20 Begin Plant
; -
30 Begin Unit
; -
a0 Employee
\ N A
50 End Unit
60 " End Plant
] Y
70 End Program
.
i !
A 3 3
o Figure 18. Skeleton Program Structure (Step 2)
3 (from Warnier, 1974).
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yield rather compliex structures. In particular, if the data subsets
corresponding to the actions represented in the program can be made either
disjoint or wholly included, a tree structured design is produced; if not,
a complex aiternative solution, which considers two data subsets simultan-
eously at all or some drcision points, is required.

When data required for decisions are not available at the time of
input (as whgn a whole record group must be read tefore the appropriate
action can be determined) a mu:tiohase (or multi-pass) design is required.
In this case, intermediate data structures need to be designed (since
they are not apparent in the original problem statement). When these
structures are specified, each phase can be designed individually using
the above techniques. Warnier doesn't discuss the backtracking technique
advocated by Jackson. Warnier's "processing phases” approach, however,
appears to approach the same type of problem, in a very diffarent manner,
as Jackson's backtracking technique.

During the specification of the program skeleton, Warnier makes no
suggestion that functional descriptions be assigned to the components of
the skeleton. The skeleton is to be nothina more than an empty flowchart
related directly (or indirectly through truth tables) to the data structure
(see Figure 18). Different kinds of boies, according to the functional
class of instructions to be inserted later, are required in certain places.
But, for the most part, this design phase completely bypasses the heuristics
of functional coherence and module independence.

With the complete program structure in skeleton form, the next step
is to list operations for each part (see Figure 19). The parts of the
skeleton are given numbers, and the operations are listed with those num-
bers so that the association with the nrogram skeleton is retained. A
list of instructions is formulated to map the input data into output. The
instructio - re not considered or written at this stage in the order in
which they wili be executed. They are considered according to the broad
functional classes into which they fall. Specifically, input instructions
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10 — Read 1st Record
40 — Read another Record or EoF
40 — If iden. Unit = ident. Ref. Unit 40
50 — If id__e_t_1t. Plant = iden. Ref. Plant 30
60 — if EOF 20
20 — Transfer Plant N* read to Ref
plant N*
30 ~— Transfer Unit N*.read to Ref
Unit N°
10 — Clear Grand Total
20 — Clear Plant Total
30 — Clear Unit Total
40 — Add Annual Emolu. to Unit total
50 — Add Unit total to Plant total
60 — Add Plant total to Grand total
20 — Edit Plant N*
30 — Edit Unit N°
40 -~ Edit Employee N°
40 — Output and restore Print line
o 50 — Edit Unit total
H 50 — Output and restore Print line
3 60 — Edit Plant total
2 60 — Qutput and restore Print line
32‘;3 70 — Edit Grand Total
,‘% 70 — Output and restore print line
¥
3
g
oy
Y
§!
-
e Figure 19. List of Operations for Each Part of the Program Skeleton
" (Step 3). (from Warnier, 1974).
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are considered first, branch instructions second, calculations third,
output instructions fourth, and subroutines last.

The next step is to sort the instructions into the proper parts
of the skeleton (see Figure 20). Within each distinct part of the pro-
gram, Warnier advises that instructions are generally performed in the
following order:

Preparation for branches
. Outputs

. Inputs
e. Branches

a
b. Caiculations
c
d

Subroutines are classified according to their function to make this
assignment.

When the process of assigning instructions to parts of the program
skeleton is compiete, a detailed flowchart for the program exists. The
instructions are in a pseudo code of nigh-level, functicnally oriented
terms. The next step is to exhaustively follow the instructions through
the flow diagram and mentally dJbserve the transformation of input to output.
This is the verification step. When the instructions were listed, in the
previous step, they were listed because each was necessary to some aspect
of program requirements. This final verification sten is to determine if
all the steps are sufficient and in the proper logical sequence.

In summary, the steps in LCP are:

a. Assess and define the data structures.
Compose the program skeleton based on the input data.

c. List the cperations for sach part of the structure. Consider
them not in order of execution, but according to category:
(1) Input, (2) Branch, (2) Calculations, (4) Output,
(5) Subroutines.
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10 — Clear Grand Total
Read 1st Record

20 — Transfer Plant N°* to Ref Plant N*
Clear Plant total
Edit Plant N°

30 — Transfer Unit N° to Ref Unit N*
Clear Unit total
Edit Unit N°®

40 — Add Annual Emol. to Unit total
Edit Employee N*
Output and restore print line
Read another record or EOF
If ident. Unit = ident. Ref. Unit 40

50 — Add Unit total Plant total
Edit Unit Total
Output and restore print line
If ident. Plant = ident. ref. Plant 30

60 — Add Plant total to Grand Total
Edit Plant total
Output and Restore print line
If EOF 20

70 — Edit Grand Total
Output and Restare Print line

Figure 2u. Surzed List of Instructions (Step &)

(from Warnier, 1974.)
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d. Sort the operations into parts of the skeleton. Classify sub-
routines according to their function. Each component of the
skeleton will generally require the following sequence:

(1) Preparation for Branches, (2) Calculations, (3) Outputs,
(4) 1Inputs, (5) Branches.

e. Verify the design by checking the instruction sequence against
the skeleton, and the skeleton against the analyzed data
structures.

LCP produces a hand-verified program written in pseudo code.
Implementation of the design should be a very straightforward translation
of this code into an actual programming language. As in Jackson's approach,
data structure is a problem "given" and design begins with its specifica-
tion. Data structure design is not addressed. LCP is also not guided by
heuristics, but is a more disciplined step-by-step procedure. 1It, therefore,
does not address the general problem-solving aspects of design, but pro-
vides specific approaches for certain kinds of design problems. The tech-
nique is logically robust enough to handle design problems of considerable
complexity, but may very well be too cumbersome to be usable by designers
in such instances. This will be discussed in a later section. Problem
subsetting, module definition and interface description, and design on
different levels of detail are subjects not discussed in this methodology.

Much of Warnier's concern is with implementation efficiency and a
good deal of his procedural presentation is concerned with the use of
truth tables and related techniques purely for the purpose of program
optimization. Although the techniques advocated are quite adequate for
assuring that the optimized version of the design is functionally correct,
they are somewhat cumbersome and may yield designs not easily comprehensible.
As a casual observation, it is not clear why Warnier goes to the (sometimes
considerable) trouble of aeveloping detailed truth tables tc descrioe a
program's decision logic and then converts those tables no a rigid lanc
sometimes very complex) prograi structurg. Pernaps taole-irisen 2rograms

would be more appropricte.
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ANALYSIS FROM A PROBLEM-SOLVING PERSPECTIVE

In a recent article, Peters and Tripp (1977) oresent a somewhat
pessimistic view of the state of the art of software design methodologies.
They criticize several design techniques for their limited applicability
and the unprovable assumptions upon which they are based. Readers famil-
iar with this literature may well concur.

From a problem-solving perspective, it is not surprising that
existing software design methodologies are primitive. As was indicatad
in the introduction, software design problems are often complex and per-
haps ill-structured. They are in the realm of artificial science, in
which the "correctness" of a solution is not necessarily an objective
issue. More to the poirt, though, the problem-solving behavior of soft-

ware designers is not well understood.

t may be useful to think of design methodologies as providing
problem-solving aids for the designer. In fact, much of the emphasis
of the surveyed design methodologies can be related directly to the re-
source limitations inherent in human problem solving (cf. Norman & Bobrow,
1975). Yet, as we hope to make clear, the methodologies barely scratch
the surface. Much mcre powerful aids may be possible, but their develop-
ment depends critically on a deeper understanding of the problem-solving
behavior involved.

The same comment applies to the development of “stronger" design
methods (in the strong vs. weak methods sense discussed in the introduc-
tion). It may or may not be possible or desirable to develop a catalogue
of strong (situation-specific) algorithms for software design. Cercainly,
the fact that software design is an artificial science does not necessar-
ily preclude such methods (mathematics is an excellent courter example).
Again, it is our current understanding of software design, a5 a human

problem-solving activity, which restricts our current afforts to the
development of weak, but general, methods.
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In terms of their fundamental apprnaches to probliem solving, the
surveyed methods fall into two broad classas. A discussion of the pro-
perties of each of these classes will be followed by a consideration of

some difficulties and errors to which the methods may be suscaptible.
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PROBLEM-REDUCTION APPROACHES :

Several of the softwara design techniques considerasd in this review
are based on scme type of problem-reduction heuristic. The underlying
intent is to decompose a larger problem into subproblems which are (hope-
fully) conceptually more manageable than the original problem. Decompo-
sition strategies of this sort are frequently employed by humar problem
solvers when the initial problem is too complex to solve directly, but
it can be broken into relatively independent subproblems. Such strategies
are also common in artificial intelligence systems designed to solve com-
plex problems.

Frequently, the key to success of a problem-reduction strategy is
the achievement of independence in the problem decomposition. If the
problem is decomposed into subproblems which are not independent, the
effective complexity of the problem solver's task may not be reduced. In
extreme cases, it may even increase. It is important to keep in mind that
the human problem solver has fairly severe rescurce limitations (especially,
short-term-memary limitations) within which to operate. ihen a problam-
reduction statagy is used on a complex problem, it is very unlikely that
‘the problem solver will be able to adequately recall and utilize the
global information required to deal with ccmplex subproblem interdepen-
dencies. Much of the benefit achievable througn such strategies involves
the abi1ity to concentrate on only one (sub)problem at a time, decompos-
ing it cn the basis of local information.
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With the exception of the methodologies of Jackson and Warnier,
all of the formal methodologies and informal design techniques considered
here are explicitly concerned with a problem-reduction strategy. The basic
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problem is decomposed into subproblems, which are in turn decomposed
into their subproblems, etc. The problem-reduction process is very
apparent, since each problem ié ordinarily expressed in terms <f the
function of a software module. Each module is then decomposed into
a set of component functions, which become modules at the next lower
level, until the design has been developed to the desired level of
detail.

The cautious reader may have noticed that the concept of plan-
ning by levels of abstraction (as discussed by Ledgard, for example)
does not strictly imply a correspondence betweer problem-reduction
steps and software modular structure. However, even this approach,
as actually practiced, relies primarily on modular decomposition. In
practice, modules correspond to the (sub)probliems to which problem-
reduction operators are applied.

The problam-reduction process typically involves both problem-
reduction operators (i.e., methods or guidelines for decomposing a
problem into subproblems) and evaluation functions (i.e., techniques
for evaluating the resulting decomposition). Structured design, for
example, uses a data-flow analysis, followed by either transform or
transaction analysis, to suggest useful modular decompositions. The
quality of the resulting decomposition is evaluated in terms of modular
independence, functional coherence, etc. Figure 21 summarizes the
problem-reduction operators and evaluation functions advocated in Struc-
tured Design, ISDS/HOS, and in the several structured-design-related
informal techniques which were surveyed.

Clearly, the problem-reduction heuristics of structured design
are more explicit, more detailed, and more procedural than those of
the other problem-reduction approaches. In the other approaches, the
designer is given very general, highly subjective problem-reduction
heuristics (Parnas' "information hiding"), or is given no guidance at
all. This should be considered as a comment on the relative maturity
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of those approaches, rather than a criticism of their fundamental
principles. It is 1ikely, though, that fairly explicit problem-
reduction heuristics will be required if a problem-reduction-type
design methodology is to be applied with any rigor or consistency.
Without such guidance, the approach may affect the designer's atti-
tudes about the design task, but have little direct effect on problem-

solving performance.

<0y O B e L Y N
P

Even ISOS/HQS offers little explicit guidance in this area.
Although this methodology provides a very explicit set of "decomposition
rules"”, those rules act primarily as formal ceonstraints on the decomposi-
tion, rather than as aids to the selection of a useful decomposition.

To express it another way, the application of the decomposition rules

is straightforward, once the function of a module has been expressed in
terms of subfunctions which are related by sequence, set partition, and
class partition logic. But that reexpression of a module's function in
terms of an appropriate partitioning into subfunctions is the crux of the
problem, and ISODS/HOS offers little help here. On the other hand,.there
appears to be no basic imcompatibility which would prevent the ISDS/HOS
designer from employing problem-reduction operators derived from the

other methodologies.

R W

Aot

The evaluation functions of these various methods, when they are
explicitly present, are primarily concerned with ensuring modular inde-
pendence. Again, the most detailed set of evaluation functions is found
in the discussion of structured design. In some cases ("Information
Hiding", ISOS/HOS), a degree of modular independence is an implicit pro-
duct of the probiem-reduction operator or of formal constraints on pro-
Where explicit evaluation functions are present

P

blem-reduction moves.
(e.g., structured design), the more important ones (e.g., coupling,

functional coherence) are highly subjective in nature, and perhaps
difficult to apply. Although ISDS/HOS may be difficult to use for other
reasons, it is almost cartainly the most effective of these methods “or

w3 achieving lTow coupling and high functional coherenca.

80

L

N s asd

5
o e ETE Tt R . .
R NPT S5 2 o A A R T M KA N O ey s i e

- e e e R R R B
=5 AT IR




ey oo
TR N RS e e ey e ok SRS QR MR W ﬁ}‘-&::-‘:m;,;,q,erq,r,t-(;J:Aﬁ“«.pj\{.wiwwﬂwﬁ\n“w;( oy t

hd

Considered as a group, the problem-reduction approaches are weak
maethods, broadly appiicable but not extremely powerful. They involve
problem-reduction operators and evaluation functions wnich are reiative-
1y simple and which have considerable face validity as mechanisms for
ensuring that the groblem is partitioned into relatively independent sub-
problems. As will be seen later, this appearanca of independence can be
misleading. Even the most extensively developed of these methodologies
involves problem-reduction operators and evaluation functions which are
heuristic and, in fact, highly subjective in application. This is good
in some respects, and bad in others. It is desirable because it allows
the methodologies to be useable on a broad range of problems by a broad
range of designers, without interfering markedly with the designer's use
of task-domain knowledge and personal design techniques. It is undesiraole
because success depends heavily on the skill and experience of the designer
to find useful problem decompositions and to recognize situations of high
subproblem interdependence.
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ALGORITHMIC APPRCACHES

The second group of design methodologies consists of the approaches
of Jackson and Warnier. These approaches differ from the first group in
several ways, and it is difficult to decide which of these differences is

the most basic.

Each of these methodologies starts with a formal specification of
input and output data structuras. A (basically mechanical) procedure is
then employed to map these data structures into a corresponding modular
structure. In the case of Warnier's approach, further algorithmic proce-
dures lead to the development and sorting of individual program statements.

In a sense, these methodologies, too, invoive protlem-reduction
operators, It is important to recoanize, though, that the problem decom-
o position process is assumed to be a mechanical, algorithmic procedure

S and, unlike the problem-reduction approaches, is applied prior to, rather
‘ than concurrently with, the development of a modular structure. The
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problem reduction is specifically not done on the basis of the designer's
problem-related knowledge or skill. Evaluation functions, in the sense
discussed in the previous :action, do not exist in these methodologies.
Clearly, though, a basic intent ¢f the mechanical procedures employed in
these approaches is the assurance of an appropriate level of independence
among system and program components.
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Bcth of these approaches start with specifications of the input
and output data structures. These specifications are expressed in the
form of hierarchic structures with mandatory and/or optionai elements,
which may be iterative. Neither author explicitly indicates how this
data structure specification should be done, or what difficulties might
be encountered in the process of describing data structures in this way.
In many application areas (e.g., business report generation), data
structuras seem naturally to take this form, and the task is probably
fairly simple. In other, or more complex, situations, it may not be
simple. In particular, the designer may have difficulty adopting this
particular representation of the problem, even though it probably has
enough logical power to handle a wide variety of design problems (see
the next section for a more detailed discussion of this issue). Informal
reports on the use of these methodologies (e.g., Peters & Tripp, 1977)
suggest that this difficulty does occur in practice.

Once the data structure specification exists, Jackson's approach
maps that data structure directly into a corresponding modular structure.
If the input and output data structures correspond, this mapping is one-
to-one; otherwise, a "structure clash" exists. The technique for handling -
this situation ("program inversion") is heuristic in nature, but appears
sound and relatively straightforward in noncomplex situations. It is not .
apparent that program inversion would become significantly more difficult
in complex design situations, but that is a possibility which should be
kept in mind.

The remaining technique in Jackson's repertory is "backtracking,"
which is a technique for handling what might be called a "temporal clash,"
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in which the system must either make a (reversible) decision based on :
incomplete information or defer the decision until more information is !
obtained. This problem is particularly significant to Jackson because
the one-to-or.2 correspondence of modular structure (and thus control :
structure) with the data structure is difficult to maintain when this
situation occurs. Jackson's solution is a “commit now, then quit and
recover if necessary" approach. This approach may be satisfactory in some
cases, but clearly cannot be universally applicable. It is possible to '
devise cases which make such recovery arbitrarily difficult. In any E
event, "backtracking" often results in unnecessarily high module coupling, :
#hich may complicate not only the design task, but virtually all later stages

of software development. It seems likely that the multiphase tachnique

of Warnier, or some similar deferred-commitment approach, is more

universally applicable.

PRIV

Once these techniques have been amployed to develop a modular
structure, the design task is more or less completed. The detailed design
of the individual modules is a programming task not formally addressed by
Jackson. In terms of level of detail, then, Jackson's approach corresponds
to that of the structured design methocs.

Warnier's methodology is even more algorithmic and extends through
the development of actual code. Again. the starting point is a hierarchic
specification of the input and output data structures. The designer must
then specify, vii formal boolean equations, the logical relationship of
the output data elements to the input data elements. From this point on,
the process is entirely algorithmic. The designer uses truth tables or
some similar means of simplifying the boolean equations, and uses mapping
rules, sorts, etc., to generate the p-ogram.

It is evident that both Jackson and Warnier are attempting to
provide objective methods for software design. In the process, though,
they (especially Warnier) have developed approaches in which the designer

executes very mechanical procedures. This may be a source of considerable
difficulty.
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Greeno distinguishes between “formal" and "informal“ reasoning, where
formal reasoning involves the use of syntactic information, formal languages,
relatively mechanical procedures, etc., while informal reasoning involves
semantic models. The reasoning processes involved may differ considerably
between these two classes of problem-solving behavior. Larkin (1977) has
presented data which suggest that very experienced physicists may adopt a
predominately semantic (informal) approach to the solution of physics
problems, whereas re]ative]y inexperienced physics students proceed
immediately to the use and solution of mathematical equations, and thus
employ formal reasoning. Presumably, approaching the problem with infor-
mal reasoning would allow the problem solver to make much greater use of
his knowledge of the problem domain, experience with conceptually related

problems, etc.

The very formal. syntactic approach of Warnier (and, to a lesser
extent, of Jackson) may very well deprive the designer of the ability to
use problem-relevant knowiedge to resolve difficulties which arise in the
design. Of course, if no difficulties arise, this may not be an issue.
At the risk of overgeneralizing, though, it would seem that in the design
of very large, complex systems, difficulties always arise. If, at this
point, the design is sufficiently different from the designer's internal
representation of the problem, and the design process has relied heavily
cn formal, syntactic reasoning or even mechanical procedures, the designer
will be in trouble. Under these circumstances, one might speculate that
corrections to the design will necessarily take the form of "patches,”
based on local knowledge and on reasoning at a fairly syntactic level.

If the speculations of the two previous paragraphs are correct,
then the methods of Warnier and Jackson are probably limited to prcblems
of moderate complexity even if the underlying design procedures are
basically sound and the specification of data structures in the required
hierarchic form is a manageable task. Of course, these latter assump-
tions must also be satisfied, but we have no present basis for determin-
ing whether, or in what situations, they are satisfied.
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de have suggested that these "algorithmic" methodologies may be
Timited with respect to problem domain and problem complexity, and that
they may 1imit the advantageous use of relevant knowledge by the expe-
riencad designer. On the other hand, such methodologies may be quite
advantageous if used by inexperienced designers for appropriate problems.
Tne difficulty is that we have no present basis for determining the aporo-
priate problem domain. It might also be true that inexperienced designers

do not become "experienced" designers, in the sense used above, by employing

such methods.

EFFECTS OF DESIGN TECHNIQUES ON PROBLEM REPRESENTATION

If satisfactory problem-solving performance is to be achieved, it
is necessary that the problem solver be able to form an appropriate repre-
sentation of the problem. While forming an appropriate representation can
aid in problem solving, it is also known that, in some problem-solving
domains, the formation of an inappropriate reprasentation can prevent a
solution from being achieved. As used here, "problem representation”
refers not merely to formal notation, but encompasses more specifically

the designar's perception of the logical structure of the problem, legal
alternatives, etc.

In order to illustrate this issue, consider for example the prob-
lem discussed by Wertheimer (1945) of finding ‘the area of a parallelo-
gram (see Figure 22a). To solve this problem, it is necessary to drop
perpendicular lines from the upper right and left corners and extend
the base Tine (in this case) to the right (see Figure 22b).

In a classroom setting, Wertheimer noted that students developed
one of two problem representations. The first involved recognizing that
the problem requires proof of the congruence of triangles aed and bfc.
The other representation is exactly as stated above: "drop perpendicular
1ines", etc. This second type of representation is, of course, inappro-
priate for parallelograms of the form shown in Figure 22c.
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The first type of representation can be characterized as
“logical," "intuitive," or “global" while the second can be charac-
terized as "mechanical" or "aljorithmic". Ouncker (1945) extended
this aspect of problem solving by demonstrating that a particular
problem representation is closely related %o the manner in which a
solution is attempted ("functional fixity"). Maier (1930) experi-
mented with techniques for causing subjects to adopt more appropri-
ate representations ("direction"). Paige and Simon (1966) demon-
strate that subjects who adopt hignly algorithmic problem representa-
tions will apply algorithmic methods, with great persistence, on
problems that have no solution (i.e., nonsense problems that do not
represent possible events). In various contexts, problem representa-
tion has been shown to affect the nature and success of solution
attempts (Hayes & Simon, 1974) and the type and number of errors
made during problem solving (Jeffries'et al, 1977).

With the exception of ISDS/HOS, the problem-reduction techniques
do not generally appear to impose significant constraints on problem
representation, nor do they give significant guidance in the choice of
a representation. They impose no obvious constraints which affect the
designer's choice of data structure types, nor do they contain strong
constrainis on the modular structure or the designer's (largely experi»
ential) criteria for modular decomposition. They do, of course, impose

constraints on the modular decomposition procedure, but that is a matter
of problem-solving method, rather than problem representation, and it has

already been discussed.

ISDS/HOS does appear to constrain the problem representation, to
a degree which may be mild or quite significant, depending on the design

problem, the designer's facility with the AXES specification language,
and the guidanca given the designer, by ISDS, during the modular decom-
position process. Clearly, the axioms and decomposition rules also
jmpose some constraints (and give some guidance) with respect to the
modular structure and decomposition alternatives, but AXES, and the ‘
interaction with ISDS, are probably even more constraining. These
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constraints are, of course, helpful in simplifying the interface be-

tween the designer and a system of automated aids. Furthermore, the
restrictions on problem reorssentation may not hinder the designer if they
match his "native" apprcich to design and are appropriate to the problem.
[f they do not, however, the constraints may significantly hinder perfor-
B mance. Unfortunately, our understanding of software design as a problem-
; solving task and of the relevant variables cf the task domain is presently
insufficient to allow us to predict the circumstances under whicn these
constraints might have deleterious effects. And once again, if the task
properties and the designer's experience and predelictions are closely

compatible with the constraints, these constraints may even be actively
beneficial to problem solving.
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The methodologies which most cleariy restrict the designeé‘s prcblem
representation are those of Jackson and Warnier.. These approaches require
that the designer adopt a particular kind of hierarchic data structure, and
that he represent all problem-re evant information in terms of those struc-
tures and their relationships. As noted earlier, thera may be situations
in which this is quite easy, but there are probably also situations in which
it is not a viable representation for use by the nhuman problem solver. Both
of these authors beg the question of the difficulty of this task, but it is
probably the most important determinant of the viability of Jackson's basic

method, and one of several significant factors in the viability of
Warnier's approach.
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Of particular relevance is Durding, Becker, and Gould's [1977) study
of the ability of human problem solvers to utilize a variety of data struc-
ture types. A1though the subjects were able to use a variety of data
; structures (e.g., nierarchic, list, network structures) when appropriate,

! they had considerable difficulty expressing information with a data struc-
ture type which did not inherently match the logical structure of the data.
While it can be objected that these subjects were naive with respect to
data structure use, and that the stimulus materiais were perhaps somewhat:
leading, the study clearly suggests a possible Timitation of these data-
structure-constrained methodologies. This limitation is psychologicatl, ;
and is not eliminated by Jackson's demonstratien that hierarchic structures é
are logically adequate for a wide variety of situations. ?
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PREVENTION AND DETECTION OF DESIGN ERRORS

The praevention, or subsequent detaction, of software design errors
is a topic of considerable importance which receives limited explicit
attention in the surveyed design methodologies. Undoubtedly, many design
errors are eliminatad by the use of any systematic approach, while others
may be implicitly prevented by particular methodologies. One has the im-
. pression, nonetheless, that the designer is mostly “left to his own devices,"
where error prevention and correction is concerned.
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Clearly, our ability to devise heuristics or procedures for the ;
prevention or detection ¢f design errors depends on the nature of those {

T :
% errors, and on our understanding of error classes. In particular, there E
3 will probably always be errors which are so specific to one application %
{ area that they elude corrective measures compatible with general-purpose é
§ (weak) design methods. And yet, it seems possible that an analysis of

ﬁ design error classes, based on cur understanding of human problem-solving

§ behavior, would yield information useful for the development of general-

% purpose preventive measures for a significant proportion of design errors. ~
|
;é Consider, for example, the design shown in Figure 3a of the ;
g Introductory section of this paper. This design represents a partial :
; solution to the problem described in Figure 2. The designer might actually \
§ decompose each of the indicated modules to several additional levels before

§~ considering the design completed. Superficially, the initial design step

shown in Figure 3a seems entirely reasonable, and is probably the most

‘ common first step taken in this problem, particularly as the problem is
worded. Yet it contains a design commitment which is wrong, or at least
very troublesome, and which may easily go undetected and uncorrected all
the way through implementation. This particular example is from a study we
are now concducting. It was generated by a very capable and fairly expe-
rienced software designer whose background included significant exposure
to taxt processing. The error in question was never detected by this
designer, and was allowed to remain in the finished design.
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To understand the nature of the problem, it wiil b2 necessary for
the reader to reacquaint himself with the design problem described in
Figure 1. Now imagine, if you will, a situation in which one page ends
in the word "Civil", while the next page begins with the word "War",
Suppose, further, that one of the index terms for the book is "Civil War".
If the text is truly processed a page at a time, as the design suggests.
no index entry will be generated in this case, because the phrase in ques-

tion crosses a page boundary.

Admittedly, this problem can be corrected by proyisions, at lower
leyels of the design, for storage of a partial phrase in a buffer, so that
processing is really done almost a page 2t a time. This "patch" is an
inferior solution, however, since i.: (1) increases coupling among modules,
(2) causes the design to contair a module ("Process Page") which does not
perform the function that most people would infer from itc name, and (3)
may result in unnecessary additional data storage and data management
activities. A better solution is a design which recognizes from the start
that processing is done a word at a time, rather than a page at a time.

In such a design, there might be a "Get Next Word" module, which calls its

submodule, "Read Page", when necessary.

The real point of this example, though, concerns not the ease or
difficulty with which the error can be corrected, but the high pronability
that it will not be detected at all. We have speculated that the designer
employing a problem-reduction strategy is forced, by his own memory resource
1imitations, to perform problem-reducticn operations primarily on the basis
of local information. Alchough there are many variables involved here,
this speculation appears, in general, to be highly defensible. If that is
true, and if the designer has not already recognized this problem at the
time the first design step (Figure 2a) was taken, then there is a small,
and perhaps decreasing probability of detection of the error as the de-
signer attends to lower levels of. the design.
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From a probjem-solying yiewpoint, this error has yery interesting
properties, This kind of error can be made very early, and high, in the
design, and yet be detectable only {f the designer is attending to fairly
global information when he is working at a very low level in the design.

In this kind of situation, it would seem that a problem-reduction approach
leads the designer "down the garden path," so to speak. Errors of this
sort are potentially very serious, and are probably quite common. An error
similar to our example was discussed by Henderson and Snowdon (1972) and
Ledgard (1973), and similar situations have been treated, though not as
errors, by Jackson (1975).

There appear to be three broad approaches available to us if we
wish to devise design procedures or aids capable of preventing or correcting
such errors during the design phase. These three approaches will be dis-
cussed in turn. First, we might attempt to provide some sort of assistance
which would aid the designer in making use of global information while he
is working lower in the design. This approach might involve some sort of
automated aid capable of extracting relevant global information from higher-
level design steps and presenting it to the designer as he works at lower
levels. It is not at all clear how this might be done and it does not pro-
mote early detection of the problem, but the possibility is mentioned here
in the interest of completeness.

A second approach involves the development of better mechanisms for
recognizing the error after the design step in which it occurred, but be-
fore more detailed design work is done. These mechanisms might assume any
of several automated or manual forms. The automated aids of ISDS/HOS are
one example, although it is not clear that they would assist witn the de-
tection of basically conceptual errors, sucn as that of our example. They
are intended more to ensure that only allowaple design moves dre maue (3§
defined by the axioms and decomposition ruies), and tnhat the vdricus
modules have compatible interfaces w~ith one another and with ihe oava
structures.
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Another kind of automated aid, which may be more relevant here, is
suggested by the "critics" used in Sacerdoti's (1975) Nets of Action
Hierarchies {NQAH) System. NOAH is an "artificial intelligence"” system
which soives problems via a hierarchic problem-reduction approach similar
to that which appears to be most common in software design. However, NOAH
also employs a set of automated procedures, called “"critics," which ciean
up the sclution plan, resolve inconsistencies, etc., after each level of
the plan is developed. The particular critics built into NOAH are very
goneral-purpose ones, and clearly could not detect an error such as that
07 the example. The concent of critics is interesting, however, and it
is conceivable that a library of softwere-design-related critics could be
constructed in connection with an automated design aiding system such as
ISDS/HOS.

As suggested earlier, it is also possibie that improved manual
procedures for the designer, and possibly improved design review and
walkthrougn techniques, could be used to detect an error of this sort
before more detailed design is dor2. This particular error is one which
might very well be detected by a structured design review before other
experienced designers, conducted after only the cne design step has been
done. This is not the way in which design reviews are ordinarily done, but
waiting until several design levels have been developed may tend to cause
the reviewers, too, to attend to relatively local information. In this
event, they might fail to detect the error even though the review group
contains personnel experienced with the class of error involved.

The third basic approach, and the one which appears most promising
to us, involves the development of heuristics, or even algorithmic proce-
dures, which are applied before a design step. These procedures are in-
tended to detect the error-prone situation and prevent the erroneous
design step from being taken in the first place. This may strike the
reader as overly ambitious. However, one, and perhaps two, heuristics
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already exist which might have prevented this particular error -- and,
perhaps, a wide variety of errors of the same gensral sort.
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The astute reader may haye been aware, all along, that the partic-
ular error, which we have used as an example, is an instance of the "struc-
ture clash" described by Jackson (1375). The structure clash is 1 situa-
tion in which the basic unit of input information is different from the
basic unit of output information, and neither is a proper subset of the
other. In the example, input is read in pages, "output" is in phrases,
and only the smaller unit, the word, is common to the two. Jackson resolves
this difficulty by "program inversion," in which communication is done in

units which might be thought of as the smallest common divi .or -- in this i
case, words.
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Tne important contribution made by Jackson, though, is not p.ogram
inversion, although that appears to be a sound treatment of the structure
clash, once it has been identified. The important contribution is his
description of a procedure for detecting the situation itself. Because
Jackson's methodology contains a procedure for detecting the structure ;
ciash, it ceases to be a hidden error-prone situation and becomes, instead,

a known property of the design problem -~ before the erroneous design
commitment is made.

[ A R

Although the heuristic for recognizing structure clashes arises
rather naturally from Jackson's basic approach, its use is by no means
restricted to designers who are using that approach. Furthermore, once
this particular class of error has been recognized as a class, other heu-
ristics also suggest themselves. For example, an extensiocn of the data flow

analysis used in structured design could probably be used to detect this
same situation.
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The important prerequisite to the systematic development of heu-
ristics or algorithms for detecting error-prone design situations is the
development of a taxonomy of error classes, from a human problem-solving
perspective. Previous analyses of software development errors have typi-
cally broken them down only into such categories as "conceptual,” “clerical”,
etc. Given tne perspective suggested above, though, it may be possible to
categorize observed design errors not only according to their surface fea-
tures, but also in terms of the processes which led to them, and their
implications for later problem-solving steps.

SUMMARY

Figure 23 provides a very brief summary of some of the factors which
might affect the utility of the various formal methodologies. Tables of
this sort are necessarily oversimplified, and this table should be inter-
preted in the context of the Tengthier explanations already given. For the
reader who has read the previo:s discussicn, this table may serve as an aid
to simultaneous consideration of the four methodologies in terms of the prin-~
cipal human factors problems whic! were identified. The brief summary
statements given below should also assist this integration.

Structured Design

Structured Design is the weakest, most broadly applicable design
methodology of the four, It appears to be compatiblie with design problems
of any size from large systems to individual programs. It is a problem-
reduction approach which ordinarily proceeds top-down, but the approach
could be used with other design strategies (e.g., middle-out). By 2 con-
siderable margin, Structurea Design is the least constraining of the four
methodologies. The designer is free to adopt the most meaningful repre-
sentation of the probies, and tc make modular decomposition and other deci-
sions on the basis of the desiyner's knowledge and experience. In fact,
it depends heavily on that kncwledge and experience. Structured Design
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Figure 23. A Somewhat Speculative Evaluation Summary
of Formal Design Methodologies
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provides a framework within which the designer can more readily recog- §
nize the design decisions to be made, and it helps in the evaiuation
of certain aspects of the resulting design, but the basic decisions
are made by the designer, not by the method.

e

Structured design is clearly susceptible to design errors in §
those situations in which modules are nonindependent, but in which their }
lack of independence cannot be recognized on the basis of the local in-
formation considerad at any single decision point in the design process. 4
This is the "garden path" type of error discussed earlier in this sec- :
tion. In at least one major instance (the "structure clash"), prccedures
exist (or could be devg]oped) which would aid the designer's recognition
of the problem. Incorporation of such an algorithm into the methodology
might be desirable.

ISDS/HOS

ISDS/HOS is also a weak, broadly applicable methodology which pro-
vides procedural and evaluative aids, but gives 1ittle guidance with re-
"spect to the content of the design decisions. The designer is constrained
to a particular approach to modular decomposition which may work very well
if it matches the properties of the problem and the style of the designer.
Otherwise, these constraints, which are rigidly enforced by software aids,
may degrade design performance. The AXES specification language (and, to
a much lesser degree, the HOS model itself), appears to require a designer
who is theoretically sophisticated -- in such areas as language theory,
for example. For all but the most fluent users, it appears likely that
the information processing load imposed on the designer by the use of the
ISDS system is significant, and would probably impaiir performance on com-
plex design problems. Only empirical study would determine whether
such impairment offsets the benefits of ISDS/HOS, which include the
development of designs with very high modular independence and coherence.

ISDS/HOS is also susceptible to "garden path" errors, and com-
patible with possible algorithms for detection of at ieast some such errors.
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The method appear< to be applicable to large systems design, but
it is probably inappropriate (or at least too cumbersome) for
Tower-level design problems (small systems or programs).

Jackson's Methodology

Jackson's methodology is a stronger, algorithmic approach,
which relieves the designer of many modular decomposition decisions.
The method is applicable at the program level and to simple systems,
but probably becomes unworkable for very complex systems. It is also
clear that the approach is not applicable to all types of design
preblems, but our understanding of preblem types is inadequate to
allow us to characterize the scope of the method.

Because of its algorithmic nature, Jackson's approach appears
to have less dependence on the designer's knowledge and experience
than do the problem-reduction methods. To some extent, this is
i1lusory, since important design decisions must be made in devising
the data structure which is the input for the method. Furthermore,
the methodology dictates most modular decomposition decisions, but
the responsibility for satisfying the processing requirements still
rests primarily with the designer, and only loose guidance is given
for this task.

The data structure constraints imposed by this method represent
fairly heavy constraints on “he designer's representation of the design
problem. Only empirical study can determine the circumstances under

RNy, R T

which this results in unacceptable performance degradation.
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Warnier's "Logical Construction of Programs"

LCP is an extraordinarily algorithmic approach to software design.
LCP begins with a definition of data structures and relationships, and
proceeds, by an almost purely algorithmic process, to develop a low-level
design. The approach is probably restricted to programs and very simple
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systems, and is probably highly restricted in terms of problem type,
but the precise nature of the latter restriction is unclear. For
such problems as report generation, the approach may be highly satis-

factory.

Like Jackson's method, Warnier's approach moves some of the
design decision making into the data structure specification, and
provides no assistance with this task. An even more difficult task .
is the detailed specification of data structure relationships, and
no assistance is given here, either. It appears likely that the
strong censtraints on problem representation, and the highly "syn-
tactic" mode of problem solving will interfere with a designer's abil-
ity to utilize knowledge and experience to advantage. Furthermore,
the resulting design may diverge significantly from the designer's
conceptualization of the problem. A likely result of such divergence
1s a tendency to “patch" complex designs when requirements change or
design difficulties are encountered. Once again, though, only empirical
study can really determine the significance of these probiems.
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CONCLUSTONS AND RECOMMENDATIONS
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We have attempted to present a systematic and critical analysis
of current and emerging software design methodologies from a human
factors perspective. We have not provided an exhaustive coverage of
all software design techniques and methods, but rather have focused
on those techniques and methods that are in widespread use and that
appear to have potentially significant effects on the software design

process.

This review effort was originally intended to satisfy several
goals:
1. Enumerate the relative strengths and weaknesses of
each considered technique
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Identify commonalities and differences ;
Critically analyze human factors problem areas :
Make specific recommendations for improvements in
design techniques

Formulate hypotheseé for the empirical analysis of
software design techniques
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d . We believe that goals 1 and 2 have been accomplished. We have

; attempted to satisfy goal 3, to the degree allowed by our currently

4 limited understanding of software design as a human problem-solving task.
In several cases, we feel that we have identified the most important

7 human factors problem areas, but were unable to provide any clear resoiu-
tion of the problems without rurther research.

PRNIRGL TN

L With respect to goal 4, we had hoped to be able to make fairly }
. specific recommendations concerning the use of the various design method- é
? ologies. In several cases, it is clear that particular design techniques i
§ must be restricted with respect to design problem type, complexity, designer

i‘ experience, etc., but we lack sufficient information to identify the actual

g» boundaries of the design problem domain to which they are applicable. As g
i a result, concrete recommendations of -this sort are not yet justifiable. ;

A number of suggestions, of a more minor nature, were discussed earlier
in this report, and were summarized in the previous subsecticn.

An even more ambitious undertaking would be the synthesis of a

more powerful system of design techniques, based on the techniques used

in existing methodologies and the new ideas which have emerged, and %
will emerge, from a consideration of the problem-solving aspects of soft- ;
’ . ware design. As a long-term goal, this undertaking appears both attrac-

tive and feasible. To have any serious hope of success, though, such an

effort must be preceded by a program of research intended to improve our ;
understanding of the software design problem domain, the problem-solving 1

B . processes used by software designers, and the kinds of errors made through é
B s the application of these processes. :
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It should be clear, then, that there are some fairly fundamental
gaps in our knowledge of the behavioral aspects of software design. 2
Goal 5 of the proje.t was the identification of research areas and f
hypotheses which might help to fill these gaps. We have identified ’
16 topics which might usefully be addressed by a long-term empirizal
research program on the behavioral aspects of software design and design
methodologies. These topics are discussed in detail in Appendix A.

Of these topics, the following appear to be appropriate for immediate
pursuit:

"Propositional” analysis of software design information
Taxonomy of the software design problem domain
Taxomony of software design errors

Analysis of the effects of ISDS/HOS problem representation
constraints

Analysis of the effects of Jackson-Warnier problem repre-
sentation constraints

Analysis of the effects of design documentation medium on
design performance

The reader is referred to Appendix A for a more detailed treatment
of these topics. The six 1isted above appear to be addressable now,
while some of the other goals (e.g., synthesis of an improved system of
design techniques) depend on information not now available about designer
behavier. Thus, the six recommended research efforts are those which
appear tractible, are worthwhile, and do not have other research efforts
as their logical predecessors.

If anything is clear from this survey, it is that there is consid-
erable room for improvement, both in design methods and in our under-
standing of design behavicr.
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APPENDIX A. POSSIBLE RESEARCH AREAS
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EMPIRICAL COMPARISON(S) OF ALTERNATIVE DESIGN METHODOLOGIES

The conduct of a controlled experimental comparison of two or
more of the surveyed design methodologies is an obvious candidate
research activity. We believe that it is not a viable candidate,
however, for several reasons. There are numerous difficulties associ-
ated with the cost, selection of subjects, experimental control, and
definition of appropriate performance measures. Those difficulties
are not insurmountable, though, and the experiment might be feasible.
The real difficulty is that other approaches appear much more Tikely
to produce usefiui information. Considered in pairs, the surveyed
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methodologies are either extremely similar, in which case a comparison
hardly seems warranted, or they differ in many relevant respects. In
the latter case (e.g., a comparison of Structured Design with Jackson's
approach), it would probably be difficult to attribute an observed
performance difference to any particular property of the methodologies,
and it would certainly be difficult to generalize the result to other
design problems, levels of designer experience, etc. While such a

£ comparative study may eventually be relevant, it appears more cost-
effective, at present, to undertake a basic program of exploratory
studies. Such studies may help establish an understanding of the task

%Q domain, individual properties of design techniques, effects of designer
%, experience, etc., which is needed to conduct this more explicit com-
% parison in a useful way.
gi "PROPOSITIONAL" ANALYSIS OF SOFTWARE DESIGN INFORMATION
The manner in which the designer initially perceives the design
i , task has obvious and significant effects on the design process. Previous
| research has shown that the manner in which text passages (Kintsch, 1974)

Ak s and computer programs (Atwood & Ramsey, 1978) are perceived, or under- g

g ?: stood, can be represented in terms of a propositional hierarchy. Using the ;
e = theoretical and empirical techniques developed in this research, the :
b A . ] ‘g
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propositional structuras constructed by a software designer to repre-
sent a design task would be investigated. Such research might resulr
in mathods for identifying likely sources of errors, metrics of design
difficulty, measures of the expected difficulty of implementing a de-
sign, cr notational schemes and guidelines to aid the designer in form-
ing an accurate understanding of a given design task. An exploratory
experiment along this 1ine has been conducted as a part of the same j
research program which produced the present report, and is described ;
by Atwood et al (1979). e

TAXOMONY OF THE SOFTWARE DESIGM PROBLEM DOMAIN

On a intuitive level, there are different types, or classes, of
software design tasks. For example, designing a compiler appears to be
different than designing a business report jeneraior. It may well be E
the case that cach type of software design task is best approached by
specific techniques, aids, etc. It seems even more 1ikely that parti-
cular techniques may be precliuded by certain problem properties. An
understanding of the properties of the problem domain which are most
relevant to designer problem-solving behavior would be quite helpful.
We are attempting to do this, by analysis, in connection with another
research effort, but empirical methods might be expected to yield more
valid and useful resuits. A possible first step in the empirical
development of such a taxomony of software design tasks might involve
developing and analyzing questionnaires to be completed by experienced
designers, and/or Delphi techniques. While the results of such studies
must always be viewed with a certain healthy skepticism, they can pro-
vide valuable insight and direction to analytical and experimental

inquiries.

TAXONOMY OF SOFTWARE DESIGM ERRORS

R PRI St hiand apes

As suggested earlier in this report, the development of a useful
taxonomy of software design errors, from the viewpoint of the problem-
solving behavior involved, appears feasible and promising. This activity
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could proceed at two different levels. First, error analyses could

be performed on designs developed in connection with other explora-
tory studies suggested herein. This approach is ¢uite inexpensive and
should yield useful insights into design errors associated with small
design problems in a limited domain. The second approach is on a much
larger scale, and would involve a similar analysis of archival design ;
error data which have been collected by DoD and perhaps other agencies. ;
The success of this effort will clearly be affected by the form and )
content of the archival data base, and further preliminary analysis i
should precede a firm commitment to undertake such a study. :

ERROR-PREVENTIVE HEURISTICS

With greater insight into designer problem-soiving behavior, and
with a taxonomy of design error types, it seems reasonable to expect
that useful error-preventive heuristics can be devised for at least some
of the important error types.

SOFTWARE DESIGN “CRITICS"

g;_ “Critics" are techniques that a designer, or a design-aiding sys-
g tem, applies to ensure that modular decompositions are correct, in the

% sense that submodules are independent and appropriate for the design task.
?' Based on a taxonomy of design arrors, it may be possible to define an

% appropriate set of critics to correspond to these errors. This would

% allow the designer to construct modular decompositions only on the basis

Sl

of local information and rely on the critics to ensure that global con- i
siderations are satisfied. Eliminating the need to explicitly consider
global informacion reduces the demands for cognitive resources imposed
on the desicner and should allow the designer to perform more effec-
tively and more efficiently. é
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QUANTITATIVE MODELING OF SOFTWARE DESIGN PROBLEM-SOLVING BEHAVIOR

Developing quantitative models of the performance of software
designers on complex design tasks would be an extremely difficult
task. However, research on plannina could provide the necessary back-
ground for the eventual development of such models. In addition to
providing an explanation of design behavior, such models could also
be used as research tools to investigate the effects of design aids,
techniques, etc.
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BEHAVIORAL ANALYSIS OF OMITTED SOFTWARE DESIGN METHODOLOGIES
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i This survey was intenticnally restricted to a subset of the soft-
§ ware-design-related methodologies currently in use. The intent of the
;, survey was to include all current major methodologies incorporating
‘%: manual methods, and to include one example (ISDS/HOS) of the computer-
;. aided "macro-methodologies" as an aid to the development of a better

‘ 3 perspective on the problem. In the process of this survey, however,

we have become convinced that: (1) an analysis in terms of human problem
solving can provide useful insights concerning individual methodologies,
and (2) the information derived from single methodologies can signifi-
cantly improve our overall perspective. It might be worthwhile, there-
fore, to extend the present survey to include the remaining "macro-
methodologies” (e.g., SREM, SDS, SADT, ISDOS). A preliminary analysis
should be dcne first, to quickly determine the degree to which these
methodologies differ rrom thoce already surveyed. Only those which

seem Tikely to contribute significantly to our understanding should be
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surveyed in detail.

ANALYSIS OF THE EFFECTS OF ISDS/HOS PROBLEM REPRESENTATION CONSTRAINTS

From the viewpoint of ISDS/HOS use, it wculd be desirable to have
a greater understanding of the effects of the problem representation
constraints resulting from the syntactically constrained decomposition
rules and the AXES specification language. Empirical observation of
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the use of the method for actual design would help clarify this issue.
Such a study should utilize moderately detailed protocol analyses,
and should ideally involve several types of software design problems.

ANALYSIS OF THE EFFECTS OF JACKSON-WARNIER PROBLEM
REPRESENTATION CONSTRAINTS P

A similar problem exists with respect to the algorithmic method- 3
ologies. In particular, the constraints on data structure types may
interfere with designer performance. An empirical study, using multiple
problem typas and protocol analysis, would do much to clarify the problem
types to which these approaches are applicable and the degree to which
the constraints interfere.

RELATION BETWEEN DESIGN SPECIFICATION AND DESIGN-

As suggested earlier, we assume that a designer, when reading a
design specification, constructs a propositional structure that repre-
sents the designer's perception of the software design task. This sfruc-
‘ture determines, in large part, the overall success of the design effort.

The appropriateness of this structure, in turn, is largely determined
by the manner in which the design requirements are specified. It may
be the case, for example, that what are generally classed as "design
errors” are actually due to errors or ambiguities in the requirements
specification. Although there are several approaches to this probiem,
the most productive approaches wculd involve an analysis of the pro-
positional structures underlying the requirements speéification and a
comparison of these structures with the internal representation con-
structed by the designer. A sericus analytical study of this issue
might also be productive. -

ANALYSIS OF THE EFFECTS OF DESIGN DOCUMENTATION MEDIUM ON
DESIGN PERFORMANCE

In a previous study (Ramsey et al, 1978) we found that the
documentation medium (flowchart or program design language) used by a
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programmer for the design and specification of a computer program had
a significant effect on the nature and quality of the resulting design.

This may very well also be the case at the level of system design
(modular decomposition, etc.). The documentation media used here
% include structure charts, HIPO charts, etc., as well as flowcharts and
g PDLs. This issue seems tractible, and could be addressed by methods
g similar to those employed in the previous study. Any such undertaking
% should, however, be preceded by a serious behavioral analysis of the R

documentation media and their vole in the design process.

ANALYSIS OF THE RELATIONSHIP QF DESIGN TO PERFORMANCE IN
SUBSEQUENT SOFTWARE DEVELOPMENT ACTIVITIES

Although design obviously affects subsequent stages in the soft-
ware development cycle, these effects are not well understood. There are
two questions that seem most relevant here. First, is it possible to
classify design errors with respect to where thevy will be detected? For
e.ample, do some types of design errors become apparent during programming $
while others remain undiscovered until coding or even testing? Second,
how is an error determined to be a design error as opposed to, for example,
an error in requirements specification, programming, etc.? The identi-
fication of the source of an error could aid in making an appropriate
correction, as opposed to merely a “"patch" at some later time in the soft-
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ware development cycle. These issues are, to a degree, related to that
of developing a taxonomy of design errors, but are also subject to in-
lependent analytical study.

DEVELOPMENT OF IMPROVED DESIGN REVIEW TECHNIQUES

Various types of design review techniques are in common use. The
general intent of these techniques is that communicating the design to
others helps to ensure that the designer's perception of the problem and
his efforts to solve that problem are correct and complete. Some types
of review techniques, however, should be more efféctive than other. The
principal questions appear to be (1) how should the review be organized, ;
(2) how should the design be presented, and (3) when should the review - 3
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: take place? We feel that the last question js particularly important, E
g but all are candidates for research.
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DEVELOPMENT OF ADDITIONAL AUTOMATED SOFTWARE DESIGN AIDS
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' Throughout this paper, we have mentioned various potential soft-
ware design aids. These aids are consistent with our current understand-
ing of the software design process. A more detailed analysis of the
problem-solving processes involved in software design can be expected to
lead to the identification of the cognitive processes involved and the
definition of aids that correspond to these processes. Such aids could,
potentially, be concerned with forming appropriate internal representa-
tions of design problems, determining how to decompose a moduie into

submodules, etc.
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SYNTHESIS OF AN IMPROVED SYSTEM OF DESIGN TECHNIQUES

This is a very attractive long-range goal. The current survey ’
has provided several useful insights, and it seems likely that the other
research activities suggested here would provide sufficient information
to justify this attempt. It is important, though, to recognize that
this is not a short-term effort. While performance improvements may
very well result directly from the application of the findings of the
more basic research activities described here, the development of a
new, comprehensive design methodology should await the establishment
of a better fundamental understanding cf software design behavior.
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